Skip to main content

Advertisement

Log in

A quasi-Newton method with sparse triple factorization for unconstrained minimization

Eine Quasi-Newton-Methode mit Tripelfaktorisierung für die Mimisierung

  • Contrinbuted Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

A new quasi-Newton method for unconstrained minimization is presented. It uses sparse triple factorization of an approximation to the sparse Hessian matrix. At each step a new column and a corresponding row of the approximation to the Hessian is determined and its triple factorization is updated. Our method deals with the same updating problem as in J. Bräuninger's paper [2]. However, we make use of a rank-two instead of a rank-one updating scheme. Our method saves over half the number of operations required in J. Bräuninger's method. Moreover, our method utilizes the sparsity and, therefore, only the nonzero entries of the factors need to be stored. The positive definiteness can be preserved easily by taking suitable precautions. Under reasonable conditions our method is globally convergent and locally superlinearly evenn-step ρ-order convergent.

Zusammenfassung

Eine neue Quasi-newton-Methode für gewisse Minimalisierungsprobleme ohne Nebenbedingungen ist angegeben. Sie benutzt dünnbesetzte Tripelfaktorisierungen einer Approximation der Hesseschen Matrix. Bei jedem Schritt wird eine neue Spalte und eine entsprechende Zeile in der Approximation der Hesseschen Matrix bestimmt und ihre Faktorisierung wird umgeformt. Unsere Methode behandelt das gleiche Problem wie die Methode von Bräuninger in [2]. Wir verwenden jedoch ein Scheme von Rang zwei statt von Rang eins. Unsere Methode spart über die Hälfte der von Bräuninger benötigten Rechenoperationen ein. Überdies nutzt unsere Methode das Auftreten vieler Nullen aus, und es brauchen deshalb nur die von Null verschiedenen Stellen der Faktoren gespeichert zu werden. Durch geeignete Maßnahmen läßt sich leicht sicherstellen, daß die Approximationen positiv definitiv ausfallen. Unter gewöhnlichen Bedingungen konvergiert unsere Methode global während sie lokal superlinear in den geraden Schritten mit Ordnung ρ konvergiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, J. M.: Triangular factors of modified matrices. Numer. Math.7, 217–221 (1965).

    Google Scholar 

  2. Bräuninger, J.: A quasi-Newton method with Cholesky factorization. Computing25, 155–162 (1980).

    Google Scholar 

  3. Dennis, J. E., Jr., Marwil, E. S.: Direct secant updates of matrix factorizations. Math. Comput.38, 459–474 (1982).

    Google Scholar 

  4. Goldfarb, D.: Factorized variable metric methods for unconstraint optimization. Math. Comput.30, 796–811 (1976).

    Google Scholar 

  5. Fletcher, R., Powell, M. J. D.: On the modification of LDLT factorizations. Math. Comput.28, 1067–1087 (1974).

    Google Scholar 

  6. Gill, P. E., Golub, G. H., Murray, W., Saundwers, M. A.: Methods for modifying matrix factorizations. Math. Comput.28, 505–535 (1974).

    Google Scholar 

  7. Gill, P. E., Murray, W.: Quasi-Newton methods for unconstrained optimization. J. Inst. Maths. Applics.9, 91–108 (1972).

    Google Scholar 

  8. Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H.: Sparse matrix methods in optimization. Technical Report SOL 82-17 (1982).

  9. Johnson, G. W., Austria, N. H.: A quasi-Newton method employing direct secant updates of matrix factorizations. SIAM J. Numer. Anal.20, 315–325 (1983).

    Google Scholar 

  10. Shanno, D. F.: On variable-metric methods for sparse Hessians. Math. Comput.34, 499–514 (1980).

    Google Scholar 

  11. Tewarson, R. P.: Sparse Matrices. New York: Academic Press 1973.

    Google Scholar 

  12. Toint, Ph. L.: On sparse and symmetric matrix updating subject to a linear equation. DAMTP 77/NA1 (1977).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by NIH grant No. AM-17593.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Dq., Tewarson, R.P. A quasi-Newton method with sparse triple factorization for unconstrained minimization. Computing 33, 315–329 (1984). https://doi.org/10.1007/BF02242275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242275

AMS Subject Classifications

Key words