Abstract
A method for solving the elliptic second order mixed boundary value problem is discussed. The finite element problem is divided into subproblems, associated with subregions into which the region has been partitioned, and an auxiliary problem connected with intersect curves. The subproblems are solved directly, while the auxiliary problem is handled by a conjugate gradient method. The rate of the convergence of the cg-method is discussed also for the cases when the Neumann and Dirichlet boundary conditions change at points belonging to the intersecting curves. Results from numerical experiments are also reported.
Zusammenfassung
Es wird eine Methode zur Lösung elliptischer Probleme zweiter Ordnung mit gemischten Randbedingungen diskutiert. Das Finite-Elemente-Problem wird in Teilprobleme aufgespalten. Daraus resultieren Unterprobleme, welche auf die durch die Aufteilung entstehenden Teilgebiete bezogen sind, sowie ein Hilfsproblem, das mit den Trennkurven zusammenhängt. Die Unterprobleme werden direkt gelöst, das Hilfsproblem wird mittels einer Konjuguerten-Gradienten-Methode behandelt. Die Konvergenzgeschwindigkeit der KG-Methode wird auch für den Fall analysiert, daß Neumann und Dirichlet Randbedingungen auf Punkten der Trennkurven wechseln. Numerische Erfahrungen liegen vor.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andreev, V. B.: Equivalent norms of the difference functions fromW 1/22 (γ). In: The study on theory of the difference schemes for elliptic and parabolic equations (Andreev, V. B., ed.), pp. 4–39. University of Moscow: Computing Center 1973.
Bjørstad, P. E., Widlund, O. B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal.23, 1097–1120 (1986).
Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam-New York: North-Holland, 1977.
Concus, P., Golub, G. H., O'Leary, D. P.: A generalized conjugate gradient method for the numerical solution of elliptic PDEs. In: Sparse matrix computations (Bunch, J. R., Rose, D. J., eds.), pp. 309–332. New York: Academic Press 1976.
Dryja, M.: A capacitance matrix method for Dirichlet problems on polygon regions. Numer. Math.39, 51–64 (1982).
Dryja, M.: A finite element-capacitance matrix method for elliptic problems on regions partitioned into subregions. Numer. Math.44, 153–168 (1984).
Dryja, M., Proskurowski, W.: Fast elliptic solvers on rectangular regions subdivided into strips. In: Advances in computer methods for PDEs, pp. 360–368. IMACS publ. 1984.
Grisvard, P.: Elliptic problems in nonsmooth domains, Boston, MA: Pitman 1985.
Oganesjan, L., Ruchovec, L.: Variational difference methods for solving elliptic problems. Akad. Nauk. Armenian SSR: Erivan 1979.
Proskurowski, W., Widlund, O. B.: On the numerical solution of Helmholtz equations by the capacitance matrix method. Math. Comput.30, 433–468 (1976).
Samarskij, A. A., Nikolajev, E. C.: Methods for solving difference equations. Moskow: Nauka 1978.
Swarztrauber, P., Sweet, R.: Efficient Fortran subprograms for the solution of elliptic partial differential equations. Algorithm 541. ACM Trans Math. Software5, 352–364, (1970).
Widlund, O. B.: An extension theorem for finite element spaces with three applications. In: Numerical Techniques in Continuum Mechanics (Hackbusch, W., Witsh, K., eds.). Proceedings of the Second GAMM-Seminar: Kiel 1986.
Widlund, O. B.: Lecture on DDM at the Banach Center. Semester on Numerical Analysis and Mathematical Modelling: Warsaw 1986.
Yakoblev, G. N.: Boundary properties of the functions from classW (1)p on a region with angle points. Doklady Academy of Sciences of U.S.R.R.140, 73–76 (1961).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mróz, M. Domain decomposition method for elliptic mixed boundary value problems. Computing 42, 45–59 (1989). https://doi.org/10.1007/BF02243142
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02243142