Skip to main content
Log in

Some remarks on the discrete maximum-principle for finite elements of higher order

Bemerkungen zum diskreten Maximumprinzip für Finite Elemente höherer Ordnung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The discrete maximum principle for finite element approximations of standard elliptic problems in the plane is discussed. Even in the case Δu=0 a slightly stronger version of the principle does not hold with piecewise quadratic elements for all but some very special triangularisation geometries.

Zusammenfassung

Diskutiert wird das diskrete Maximumprinzip für Finite-Element-Approximationen von elliptischen Standardproblemen in der Ebene. Schon im Fall Δu=0 treten bei stückweise quadratischen Elementen Verletzungen einer leicht verschärften Version des Prinzips auf, außer in einigen ganz speziellen Triangulierungsgeometrien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ciarlet, P. G.: Discrete maximum principle for finite-difference operators. Aequationes Math.4, 338–352 (1970).

    Google Scholar 

  2. Ciarlet, P. G., Raviart, P.-A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods in Appl. Mech. and Eng.2, 17–31 (1973).

    Google Scholar 

  3. Höhn, W., Mittelmann, H. D.: Some remarks on the discrete maximum-principle for finite elements of higher order. Preprint 372, Techn. Hochschule Darmstadt, 1977.

  4. Höhn, W., Törnig, W.: Ein Maximum-Minimum-Prinzip für Lösungen von Finite-Element-Approximationen für quasilineare elliptische Randwertprobleme. Computing18, 267–270 (1977).

    Google Scholar 

  5. Lorenz, J.: Zur Inversmonotonie diskreter Probleme. Numer. Math.27, 227–238 (1977).

    Google Scholar 

  6. Nitsche, J.:L -convergence of finite element approximations. In: Mathematical Aspects of Finite Element Methods. (Galligiani, I., Magenes, E., eds.) (Lecture Notes in Mathematics, Vol. 606.) Berlin-Heidelberg-New York: Springer 1977.

    Google Scholar 

  7. Strang, G., Fix, G. J.: An analysis of the finite element method. Englewood Cliffs, N. J.: Prentice Hall 1973.

    Google Scholar 

  8. Schatz, A.: A weak discrete maximum principle and stability of the finite element method inL of plane polygonal domains. MC 34, 77–91 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höhn, W., Mittelmann, H.D. Some remarks on the discrete maximum-principle for finite elements of higher order. Computing 27, 145–154 (1981). https://doi.org/10.1007/BF02243548

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243548

Keywords

Navigation