Abstract
By imposing some conditions on the discrete dynamical systems generated by one step discretization methods, we construct some non linear one step methods of the first and second order, which turn out to beA-stable orL-stable according to the current definitions. Numerical experiments are carried out on some common stiff test problems, confirming the validity of the methods.
Zusammenfassung
Indem wir den aus den One-Step-Diskretierungsmethoden entstandenen dynamischen Systemen einige Bedingungen auferlegen, konstruieren wir einige nichtlineare One-Step-Methoden von erster und zweiter Ordnung, die nach der allgemeinen BezeichnungA-stabil oderL-stabil sind. Zahlenergebnisse an einigen „steifen” Test-Problemen, die vorgelegt werden, bestätigen die Brauchbarkeit dieser Methoden.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lambert, J. D.: Computational Methods in Ordinary Differential Equations. Wiley 1973.
Lambert, J. D.: Two unconventional classes of methods for Stiff Systems, in: Stiff Differential Systems (Willoughby, R. A., ed.). Plenum. 1974.
Enright, W. E.: Second derivative multistep methods for Stiff Ordinary differential equations. SIAM JNA1973, 321–331.
Liniger, W., Willoughby, R. A.: Efficient Integration methods for Stiff Systems of Ordinary Differential Equations. SIAM JNA7, 47–66 (1970).
Liniger, W., Odeh, F.:A-stable, Accurate Averaging of Multistep Methods for Stiff Differential Equations. IBM JAE16, 335–348 (1972).
Stetter, H. J.: Stability of discretizations on infinite intervals. Conference on Applications of Num. Analysis (1971), pp. 207–222. Berlin-Heidelberg-New York: Springer.
Bathia, N. P., Szego, G. P.: Stability Theory for Dynamical Systems. Berlin-Heidelberg-New York: Springer 1970.
Nevanlinna, O., Sipila, A. H.: A non existence theorem for explicitA-stable methods. Mathematics of computation28, 128, 1053–1055 (1974).
Sansoni, G., Conti, R.: Non linear differential equations. Macmillan 1964.
Marchetti, L., Negrini, P., Salvadori, L., Scalia, M.: Liapunov direct method in approaching biforcation problems. (To be published in Annali di Matematica).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Trigiante, D. Asymptotic stability and discretization on an infinite interval. Computing 18, 117–129 (1977). https://doi.org/10.1007/BF02243621
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02243621