Skip to main content
Log in

An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons

Ein optimaler Algorithmus zur Berechnung des minimalen Eckenabstandes zwischen zwei sich überschneidenden konvexen Polygonen

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

Abstract

LetP={p 1 ,p 2 , ...,p m } andQ={q 1 ,q 2 , ...,q n } be two intersecting convex polygons whose vertices are specified by their cartesian coordinates in order. An optimalO(m+n) algorithm is presented for computing the minimum euclidean distance betweena vertexp i inP and a vertexq j inQ.

Zusammenfassung

SeienP={p 1 ,p 2 , ...,p m } undQ={q 1 ,q 2 , ...,q n } zwei sich überschneidende konvexe Polygone, deren Ecken durch die kartesischen Koordinaten in der richtigen Reihenfolge festgelegt sind. Wir geben einen optimalenO(m+n)-Algorithmus für die Berechnung der minimalen euklidischen Distanz zwischen einer Eckep i inP und einer Eckeq j inQ an.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Edelsbrunner, H.: On computing the extreme distances between two convex polygons. Technical report F96, Technical University of Graz, 1982.

  2. Schwartz, J. T.: Finding the minimum distance between two convex polygons. Information Processing Letters1981, 168–170.

  3. Toussaint, G. T., Bhattacharya, B. K.: Optimal algorithms for computing the minimum distance between two finite planar sets. Fifth International Congress of Cybernetics and Systems, Mexico City, August 1981.

  4. McKenna, M., Toussaint, G. T.: Finding the minimum vertex distance between two disjoint convex polygons in linear time. Tech. Report No. SOCS-83.6, School of Computer Science, McGill University, April 1983.

  5. Chin, F., Wang, C. A.: Minimum vertex distance problem between two convex polygons. Technical report, University of Alberta, 1983.

  6. Supowit, K. J.: The relative neighborhood graph, with an application to minimum spanning trees. J. A. C. M. (in press).

  7. Lee, D. T., Preparata, F. P.: The all-nearest-neighbor problem for convex polygons. Information Processing Letters7, 189–192 (1978).

    Google Scholar 

  8. Yang, C. C., Lee, D. T.: A note on the all-nearest-neighbor problem for convex polygons. Information Processing Letters8, 193–194 (1979).

    Google Scholar 

  9. Chazelle, B.: Computational geometry and convexity. Ph. D. thesis, Department of Computer Science, Carnegie-Mellon University, July 1980.

  10. O'Rourke, J., et al.: A new linear algorithm for intersecting convex polygons. Computer Graphics and Image Processing19, 384–391 (1982).

    Google Scholar 

  11. Chazelle, B., Dobkin, D.: Detection is easier than computation. Proc. Twelfth Annual ACM Symposium on Theory of Computing, April 1980, pp. 146–153.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by N.S.E.R.C. grant no. A9293.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toussaint, G.T. An optimal algorithm for computing the minimum vertex distance between two crossing convex polygons. Computing 32, 357–364 (1984). https://doi.org/10.1007/BF02243778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243778

Key words

Navigation