Skip to main content
Log in

A Farkas-type theorem for linear interval equations

Ein Satz von Farkasschen Type für lineare Intervallgleichungssysteme

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We give a Farkas-type necessary and sufficient condition for a system of linear interval equations to have a nonnegative solution, and derive a consequence of it.

Zusammenfassung

Notwendige und hinreichende Bedingungen für die Existenz einer nichtnegativen Lösung eines linearen Intervallgleichungssystems werden angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Oettli, W., and Prager, W.: Compatibility of Approximate Solution of Linear Equations with Given Error Bounds for Coefficients and Right-Hand Sides, Numerische Mathematik 6(1964), 405–409.

    Article  Google Scholar 

  2. Rohn, J.: Duality in Interval Linear Programming, in: Interval Mathematics 1980 (K. L. E. Nickel, Ed.), Academic Press, New York 1980, 521–529.

    Google Scholar 

  3. Rohn, J.: Strong Solvability of Interval Linear Programming Problems, Computing 26(1981), 79–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohn, J. A Farkas-type theorem for linear interval equations. Computing 43, 93–95 (1989). https://doi.org/10.1007/BF02243809

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243809

AMS Subject Classifications

Key words