Skip to main content
Log in

A Greedy-heuristic for 3-partitioning with similar elements

Eine Greedy-Heuristik zur Partitionierung in gleichartige Tripel

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

For a given list of 3m items with positive lengths we look for a partition intom subsets containing 3 elements each, such that the ratio of the largest sum of lengths to the smallest sum of lengths is as small as possible. Let ρG be the value of this ratio using a Greedy-heuristic and ρ* the optimal value of this ratio; furthermore let β be the ratio of the largest length of an item to the smallest length. Then we will show that for 1≤β≤4 the inequality ρG*≤(4β+7)(2β+5) holds and this bound is tight.

Zusammenfassung

Für eine Liste von 3m Elementen von positiver Länge suchen wir eine Partition inm Teilmengen, die jeweils 3 Elemente enthalten, so daß der Quotient der größten Längensumme zur kleinsten Summe so klein wir möglich wird. Sei ρG der Wert dieses Quotienten, den man bei Benutzung einer Greedy-Heuristik erhält und ρ* der optimale Wert dieses Quotienten; weiterhin sei β der Quotient der größten Länge eines Elements zur kleinsten Länge. Wir zeigen, daß für 1≤β≤4 die Ungleichung ρG*≤(4β+7)(2β+5) gilt und daß diese Schranke scharf ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Coffman E. G., Jr., Langston M. A.: A performance guarantee for the greedy set-partitioning algorithm. Acta Inf.,21: 409–415 (1984).

    Google Scholar 

  2. Garey M. R., Johnson D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellerer, H., Woeginger, G. A Greedy-heuristic for 3-partitioning with similar elements. Computing 50, 271–278 (1993). https://doi.org/10.1007/BF02243817

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243817

AMS Subject Classifications

Key words

Navigation