Abstract
In a recently developed approach to the optical inverse scattering problem, the need arose to solve very large systems of linear equations with a nonsparse matrix. The entries in the matrix are determined by the specifications for the data collection pattern. The matrix is not a Discrete Fourier Transform matrix, and it not anenable to FFT methods. In this paper we show how a combination of the techniques of “redundancies” and “Kronecker decompositions” may be used with a specification for the data collection to produce a fast, accurate algorithm which solves the linear system. This algorithm has been implemented on a sequential computer, but parallel computation is clearly feasible.
Zusammenfassung
In einer neueren Darstellung des optischen inversen Streuungsproblems tauchte das Problem auf, große lineare Gleichungssysteme mit vollbesetzten Matrizen zu lösen. Die Matriexelemente sind durch die Beschreibungen der Muster für die Datenerfassung festgelegt. Die Matrix beschreibt keine diskrete Fourier-Transformation und ist nicht auf FFT-Methoden anwendbar. In diesem Artikel zeigen wir, wie man eine Kombination der “redundancies”-Techniken und der Kronecker-Zerlegungen dazu benutzen kann, mit einer Beschreibung der Datenerfassung einen schnellen und genauen Algorithmus zur Lösung linearer Gleichungssysteme zu gewinnen. Dieser Algorithmus wurde auf einem sequentiellen Computer implementiert; parallele Berechnung ist natürlich auch durchführbar.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Good, I. J.: The Interactive Algorithm and Practical Fourier Analysis. J. Roy. Stat. Soc.B 20, 361–372 (1958).
Cooley, J. W., Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comp.19, 297–301 (1965).
Andrews, H. C.: Computer Techniques in Image Processing, pp. 73–90. New York: Academic Press 1970.
Lam, D. K. K.: Fast Matrix Inversion and Application in Optics. Technical Report TR 75-14, Department of Computing Science, University of Alberta, Canada, 1975.
Traub, J. F.: Associated Polynomials and Uniform Methods for the Solution of Linear Problems. SIAM Review8, 287–301 (1966).
Pereyra, V., Ballester, C.: On the Construction of Discrete Approximations to Linear Differential Expressions. Math. Comp.21, 297–302 (1967).
Westlake, J. R.: A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, pp. 89–116. New York: J. Wiley 1968.
Ekstrom, M. P.: A Numerical Algorithm for Identifing Spread functions of Shift-Invariant Imaging Systems. IEEE Trans. on Computers22, 322–327 (1973).
Lancaster, P.: Theory of Matrices. New York: Academic Press 1969.
Lam, D. K., Schmid-Weinmar, H. G., Wouk, A.: The 3-D Distribution of Sources of Optical Scattering Computed from Complex-Amplitive Far-Field Data. Canadian Journal of Physics54, 1925–1936 (1976).
Isaacson, A., Keller, H. B.: Analysis of Numerical Methods, p. 37. New York: J. Wiley 1966.
Gentherman, W. M.: Matrix Multiplication and Fast Fourier Transforms. Bell System Technical Journal47, 1099–1103 (1968).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lam, D.K., Wouk, A. Redundancy techniques and fast algorithms for a special large linear system. Computing 18, 317–327 (1977). https://doi.org/10.1007/BF02244018
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02244018