Abstract
We present a method depending on matrix continued fractions and Sturm's comparison theorem to obtain verified inclusions for eigenvalues of the underlying boundary value problem of the first-order phase locked loop equation\(pu'' + (\lambda + \tilde g)u = 0\),p = 1/SNR with general phase detector characteristic\(\tilde g(\phi )\).
Zusammenfassung
Wir stellen eine Methode vor, die mit Hilfe von Matrix-Kettenbrüchen und dem Sturm'schen Vergleichssatz die Verifikation von Eigenwerten des Randwertproblems der Phase-Locked-Loop-Gleichung erster Ordnung\(pu'' + (\lambda + \tilde g)u = 0\),p = 1/SNR, mit allgemeiner phasenvergleichender Charakteristik\(\tilde g(\phi )\) erlaubt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press 1983.
Balodis, M.: Laboratory comparison of tanlock and phaselock receivers. Proc. Nat. Telem. Conf. Los Angeles5, 1–11 (1964).
Beaufils, P., Luther, W. J.: Boucle à verrouillage de phase Aachen 1985.
Beekmann, B., Lökes, H.: Estimates for the eigenvalues of Hill's equation and applications for the eigenvalues of the Laplacian on toroidal surfaces. Manus. Math.68, 295–308 (1990).
La Frieda, J. R., Lindsey, W. C.: Transient analysis of phase-locked tracking systems in the presence of noise. IEEE Trans. Inform. Theory IT 19, 155–165 (1973).
Gardner, F. M.: Phaselock techniques, 2 edn. New York: Wiley 1979.
Hochstadt, H.: A direct and inverse problem for a Hill's equation with double eigenvalues. J. Math. Anal. Appl.66, 507–513 (1978).
Krämer, W.: Eine portable Langzahl-und Langzahlintervallarithmetik mit Anwendungen,. ZAMM73, T849-T853 (1993).
Lohner, R.: Einschließungen bei Anfangs- und Randwertaufgaben gewöhnlicher Differentialgleichungen. In: Kulisch, U. W. ed.: Wissenschaftliches Rechnen mit Ergebnisverifikation, pp. 183–223. Braunschweig: Vieweg 1989.
Luther, W. J.: Nonstandard Analysis-Methoden in Anwendung auf ein Eigenwertproblem der PLL Theorie. ASST '90, Proceedings, Informatik-Fachberichte 253, pp. 136–141. Berlin Heidelberg New York Tokyo: Springer 1990.
Luther, W. J., Otten, W.: Numerical treatment of the first-order PLL equation with sinusoidal phase detector characteristic. Appl. Anal. (in press).
Meyer, H., Ascheid, G.: Synchronization inddigital communications, vol 1. New York: Wiley 1990.
Magnus, W., Winkler, S.: Hill's equation. New York: Wiley 1966.
Olver, F. W. J.: Asymptotics and special functions. New York: Academic Press 1974.
Otten, W.: Verified inclusions of eigenvalues of linear difference and differential equations. In: Atanassova, L., Herzberger, J. (eds.): Computer arithmetic and enclosure methods, pp. 409–417. Amsterdam: North-Holland 1992.
Otten, W.: Herleitung und Implementation eines Verfahrens zur verifizierten Bestimmung von Eigenwerten linearer Differenzengleichungen. Dissertation, RWTH-Aachen 1993.
Risken, H.: The Fokker-Planck equation, 2nd edn. Berlin Heidelberg New York: Springer 1989.
Rosenkranz, W.: Phase locked loops with limiter phase detectors in the presence of noise. IEEE Trans. Comm. COM30, 2297–2304 (1982).
Rump, S. M.: Solving algebraic problems with high accuracy. In: Kulisch, U. W., Miranker W. L. (eds.): A new approach to scientific computation, pp. 53–120. New York: Academic Press 1982.
Strutt, M. J. O.: Lamésche-Mathieusche- und verwandte Funktionen in Physik und Technik. Berlin 1932, Chelsea, New York 1967.
Viterbi, A. J.: Phase-locked loop dynamics in the presence of noise by Fokker-Planck techniques. Proc. IEEE51, 1737–1753 (1963).
Weinstein, M., Keller, J. B.: Hill's equation with a large potential. SIAM J. Appl. Math.45, 200–214 (1985).
Weinstein, M., Keller, J. B.: Asymptotic behavior of stability regions for Hills equation. SIAM J. Appl. Math.47, 941–945 (1987).
Zygmund, A.: Trigonometric series, vol. I. Cambridge: Campbridge University Press 1968.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Luther, W.J., Otten, W. Verified inclusion for eigenvalues of the first order PLL equation with general phase detector characteristics. Computing 52, 213–232 (1994). https://doi.org/10.1007/BF02246504
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02246504