Abstract
Linear multistep (LM) formulae are commonly used in the numerical solution of initial value problems of first order ordinary differential equations (ODE's). A rigorous theory for LM formulae, when these are implemented as constant stepsize constant formula methods, was developed after the publication of Dahlquist's classical paper [1] in 1956. After 1969 LM formulae have often been applied in practical codes as variable stepsize variable formula methods (VSVFM's). Therefore the development of a rigorous theory for LM formulae also in the case where these are used as VSVFM's is desirable. A formal definition of general LM VSVFM's is given in this paper. Then some theorems concerning the consistency and the convergence of general LM VSVFM's are formulated and proved. The results obtained in this paper can be extended for one-leg VSVFM's and for VSVFM's based on predictorcorrector schemes of different types.
Zusammenfassung
Lineare Mehrschrittverfahren werden zur numerischen Lösung von Anfangswertproblemen für Systeme erster Ordnung gewöhnlicher Differentialgleichungen angewandt. Eine strenge Theorie für lineare Mehrschrittverfahren, wenn diese mit konstanter Schrittweite und konstanter Formel implementiert werden, wurde nach der Publikation des klassischen Artikels von G. Dahlquist ([1]) entwickelt. Seit 1969 werden lineare Mehrschrittverfahren häufig in Codes mit variabler Schrittweite und variabler Formel verwendet. Deswegen ist eine Entwicklung einer strengen Theorie für lineare Mehrschrittverfahren mit variabler Schrittweite und variabler Formel wünschenswert. Eine formale Definition allgemeiner linearer Mehrschrittverfahren mit variabler Schrittweite und variabler Formel wird in diesem Artikel gegeben. Dann werden einige Theoreme über die Konsistenz und Konvergenz allgemeiner linearer Mehrschrittverfahren mit variabler Schrittweite und variaber Formel formuliert und bewiesen. Die Resultate in diesem Artikel können auf “one-leg”-Methoden und auf Prädiktor-Korrektor-Methoden verschiedener Typen mit variabler Schrittweite und variabler Formel ausgedehnt werden.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dahlquist, G.: Convergence and consistency in the numerical integration of ordinary differential equations. Math. Scand.4, 33–53 (1956).
Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Techn., No. 130, Stockholm, 1959.
Dahlquist, G.: Error analysis for a class of methods for stiff non-linear initial value problems. In: Numerical Analysis Dundee 1975 (Lecture Notes in Mathematics, Vol. 506), pp. 60–74. Berlin-Heidelberg-New York: Springer 1976.
Dahlquist, G.: On the relation ofG-stability to other concepts for linear multistep methods. In: Topics in Numerical Analysis III (Miller, J. H., ed.), pp. 67–80. London: Academic Press 1977.
Dahlquist, G.: Some properties of linear multistep and one-leg methods for ordinary differential equations. In: Working Papers for the 1979 SIGNUM Meeting on Numerical Ordinary Differential Equations (Skeel, R. D., ed.) Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Ill., 1979.
Gear, C. W.: Numerical initial value problems in ordinary differnetial equations. Englewood Cliffs, N. J.: Prentice-Hall 1971.
Gear, C. W.: The automatic integration of ordinary differential equations. Comm. ACM14, 176–179 (1971).
Gear, C. W.: Algorithm 407, DIFSUB for solution of ordinary differential equations. Comm. ACM14, 185–190 (1971).
Gear, C. W.: Runge-Kutta starters for multistep methods. ACM Trans. Math. Software6, 263–279 (1980).
Gear, C. W.: Numerical solution of ordinary differential equations: is there anything left to do? SIAM Review23, 10–24 (1981).
Gear, C. W., Tu, K. W.: The effect of variable mesh on the stability of multistep methods. SIAM J. Numer. Anal.11, 1025–1043 (1974).
Gear, C. W., Watanabe, D. S.: Stability and convergence of variable multistep methods. SIAM J. Numer. Anal.11, 1044–1058 (1974).
Grigorieff, R. D.: Zur Stabilität von Mehrschrittverfahren auf nichtäquidistantem Gitter. In: Numerical methods for solving initial value problems, Proceedings, Oberwolfach, 28.6–4.7. 1981. (Dahlquist, G., Jeltsch, R., eds.). Bericht Nr. 9, Institut für Geometrie und praktisache Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Federal Republic of Germany, August 1981.
Grigorieff, R. D.: Stabilität von Mehrschrittverfahren auf variablen Gittern. (Preprint Reihe Mathematik Nr. 89.) Technische Universität Berlin, Berlin 1981.
Henrici, P.: Discrete methods in ordinary differential equations. New York: Wiely 1962.
Hindmarsh, A. C.: GEAR: ordinary differential equation solver. Report UCRL-51186, Lawrence Livermore Laboratory. Livermore, Calif., 1971.
Hull, T. E., Enright, W. H., Fellen, B. M., Sedgwick, A. W.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer Anal.9, 603–637 (1972).
Jackson, K. R.: Variable stepsize, variable order integrand approximation methods for numerical solution of ODEs. (Technical Report No. 129.) Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1978.
Jackson, L. W., Skeel, R. D.: Convergence and stability of Nordsieck methods. (Technical Report No. 89.) Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 1976.
Krogh, F. T.: VODQ/SVDQ/DVDQ-variable order integrators for the numerical solution of ordinary differential equations. Report, Jet Propulsion Laboratory, Pasadena, Calif., 1969.
Krogh, F. T.: On testing a subroutine for the numerical solution of ordinary differential equations. J. Assoc. Comput. Mach.20, 545–562 (1973).
Lambert, J. D.: Computational methods in ordinary differential equations. London: Wiley 1973.
Lapidus, L., Seinfeld, J. H.: Numerical solution of ordinary differential equations. New York: Academic Press 1971.
März, R.: Variable multistep methods. Preprint No. 7 (Neue Folge). Sektion Mathematik, Humboldt-Universität zu Berlin, DDR, 1981.
Nordsieck, A.: On the numerical integration of ordinary differential equations. Math Comput.16, 22–49 (1962).
Piotrowski, P.: Stability, consistency and convergence of variableK-step methods for numerical integration of large systems of ordinary differential equations. In: Conference on Numerical Solution of Differential Equation (Morris, J. Ll., ed.), pp. 221–227. Berlin-Heidelberg-New York: Springer 1969.
Ralston, A.: A first course in numerical analysis. New York: McGraw-Hill 1965.
Sand, J.: On one-leg and linear multistep formulas with variable stepsizes. (Report TRITA-NA-8112.) Department of Numerical Analysis and Computer Science, The Royal Institute of Technology, Stockholm, Sweden, 1981.
Shampine, L. F., Gordon, M. K.: Computer solution of ordinary differential equations: The initial value problem. San Franscisco: Freeman 1975.
Stetter, H. J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973.
Thomsen, P. G., Zlatev, Z.: Two-parameter families of predictor-corrector methods for the solution of ordinary differential equations. BIT19, 503–517 (1979).
Zlatev, Z.: Stability properties of variable stepsize variable formula methods. Numer. Math.31, 175–182 (1978).
Zlatev, Z.: Zero-stability properties of the three-ordinates variable stepsize variable formula methods. Numer. Math.37, 157–166 (1981).
Zlatev, Z., Thomsen, P. G.: Application of backward differentiation methods to the finite element solution of time dependent problems. Internat. J. Numer. Methods Engng.14, 1051–1061 (1979).
Zlatev, Z., Thomsen, P. G.: Automatic solution of differential equations based on the use of linear multistep methods. ACM Trans. Math. Software5, 401–414 (1979).
Zlatev, Z., Thomsen, P. G.: Differential integrators based on linear multistep methods. In: “Méthodes numériques dans les sciences de l'ingénieur — G.A.M.N.I. 2 (Absi, E., Glowinski, R., Lascaux, P., Veysseyre, H., eds.), pp. 221–231. Paris: Dunod 1980.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Zlatev, Z. Consistency and convergence of general linear multistep variable stepsize variable formula methods. Computing 31, 47–67 (1983). https://doi.org/10.1007/BF02247936
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02247936