Abstract
The FORTRAN implementation of an efficient algorithm which solves the Assignment Problem for sparse matrices is given. Computional results are presented, showing the proposed method to be generally superior to the best known algorithms.
Zusammenfassung
Für Zuordnungsprobleme mit dünn besetzter Kostenmatrix wird eine FORTRAN-Implementierung eines wirkungsvollen Lösungsverfahren angegeben. Die angeführten Rechenergebnisse zeigen, daß die vorgeschlagene Methode den derzeit besten bekannten Algorithmen ühberlegen ist.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The design and analysis of computer algorithms. Reading, Mass.: Addison-Wesley 1974.
Barr, R. S., Glover, F., Klingman, D.: The alternating basis algorithm for assignment problems. Mathematical Programming13, 1–13 (1977).
Burkard, R. E., Derigs, U.: Assignment and matching problems: solution methods with FORTRAN-programs, pp. 1–11. Berlin-Heidelberg-New York: Springer 1980.
Carpaneto, G., Toth, P.: Algorithm 548 (solution of the assignment problem). ACM Trans. on Mathematical Software6, 104–111 (1980).
Carpaneto, G., Martello, S., Toth, P.: Il problema dell'assegnamento. Tech. Rep. 13. 81, SOFMAT, Progetto Finalizzato Informatica del CNR, Roma (1981).
Kuhn, N. W.: The hungarian method for the assignment problem. Naval Res. Logist. Quart.2, 83–97 (1955).
Lawler, E.: Combinatorial optimization: networks and matroids, pp. 201–207. New York: Holt, Rinehart and Wilson 1976.
Author information
Authors and Affiliations
Additional information
Research supported by CNR Italy.
Rights and permissions
About this article
Cite this article
Carpaneto, G., Toth, P. Algorithm for the solution of the assignment problem for sparse matrices. Computing 31, 83–94 (1983). https://doi.org/10.1007/BF02247938
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02247938