Skip to main content
Log in

A variant of finite-dimensional Tikhonov regularization with a-posteriori parameter choice

Eine Variante endlich-dimensionaler Tikhonov-Regularisierung mit a-posteriori Parameterwahl

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we consider a particular variant of finite-dimensional Tikhonov regularization for ill-posed operator equations. Convergence rates are established and an a-posteriori parameter choice method is derived that leads to optimal convergence rates with respect to data errors and with respect to the finite-dimensional subspace, without using any information about the exact solution. Finally, using linear splines we present several numerical examples that confirm the theoretical results.

Zusammenfassung

In dieser Arbeit betrachten wir eine besondere Variante endlich-dimensionaler Tikhonov-Regularisierung schlechtgestellter Operatorgleichungen. Konvergenzraten werden nachgewiesen und eine a-posteriori Parameterwahl wird hergeleitet, die optimale Konvergenzraten bezüglich des Datenfehlers und der endlich-dimensionalen Approximation liefert, ohne Information über die exakte Lösung zu benötigen. Schließlich präsentieren wir auch einige numerische Beispiele, bei denen lineare Splinefunktionen verwendet werden, die die theoretischen Ergebnisse bestätigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J. V., Murio, D. A.: Combined function specification — regularization procedure for solution of inverse heat conduction problem. AIAA Journal24/1, 180–185 (1984).

    Google Scholar 

  2. Elden, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT17, 134–145 (1977).

    Google Scholar 

  3. Elden, L.: The numerical solution of a noncharacteristic Cauchy problem for a parabolic equation. In: Numerical Treatment of Inverse Problems in Differential and Integral Equations (Deuflhard, P., Hairer, E., eds.), pp. 246–268. Basel: Birkhäuser 1983.

    Google Scholar 

  4. Elden, L.: An efficient algorithm for the regularization of ill-conditioned least squares problems with triangular Toeplitz matrix. Siam J. Sci. Stat. Comp.5, 237–254 (1984).

    Google Scholar 

  5. Engl, H. W., Neubauer, A.: An improved version of Marti's method for solving ill-posed linear integral equations. Math. Comp.45, 405–416 (1985).

    Google Scholar 

  6. Engl, H. W.: Regularization and least squares collocation. In: Numerical Treatment of Inverse Problems in Differential and Integral Equations (Deuflhard, P., Hairer, E., eds.), pp. 345–354. Basel: Birkhäuser 1983.

    Google Scholar 

  7. Garbor, B. S., et al.: Matrix Eigensystems Routines — EISPACK Guide, Lecture Notes in Computer Science No. 51 New York: Springer 1976.

    Google Scholar 

  8. Gfrerer, H.: An a-posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comp.49, 507–522, S5–S12 (1987).

    Google Scholar 

  9. Groetsch, C. W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Boston: Pitman 1984.

    Google Scholar 

  10. Groetsch, C. W.: Comments on Morozov's discrepancy principle. In: Improperly Posed Problems and Their Numerical Treatment (Hämmerlin, G., Hoffmann, K. H., eds.), pp. 97–104. Basel: Birkhäuser 1983.

    Google Scholar 

  11. Groetsch, C. W., King, J. T., Murio, D.: Asymptotic analysis of a finite element method for Fredholm equations of the first kind. In: Treatment of Integral Equations by Numerical Methods (Baker, C. T. H., Miller, G. F., eds.), pp. 1–11. London: Academic Press 1982.

    Google Scholar 

  12. Krasnoselskii, M. A., et al.: Integral operators in spaces of summable functions. Leyden: Noordhoff Int. Publ. 1976.

    Google Scholar 

  13. Morozov, A.: On the solution of functional equations by the method of regularization. Soviet Math. Dokl.7, 414–417 (1966).

    Google Scholar 

  14. Neubauer, A.: An a-posteriori parameter choice for Tikhonov-regularization in Hilbert scales leading to optimal convergence rates. Siam J. Num. Anal., to appear.

  15. Neubauer, A.: Numerical realization of an optimal discrepancy principle for Tikhonov regularization in Hilbert scales. Computing39, 43–55 (1987).

    Google Scholar 

  16. Neubauer, A.: Zur Tikhonov-Regularisierung von linearen Operatorgleichungen. Diplomarbeit, Univ. Linz, Austria, 1984.

    Google Scholar 

  17. Prenter, P. M.: Splines and Variational Methods, Pure and Appl. Math. New York: J. Wiley and Sons 1975.

    Google Scholar 

  18. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. New York: Springer 1980.

    Google Scholar 

  19. Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Doklady4, 1035–1038 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This author's research was partially supported by the Austrian Fonds zu Förderung der wissenschaftlichen Forschung (project S 32/03). This author is on leave from Universität Linz, Austria; the travel support from the Fulbright Commission is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, J.T., Neubauer, A. A variant of finite-dimensional Tikhonov regularization with a-posteriori parameter choice. Computing 40, 91–109 (1988). https://doi.org/10.1007/BF02247939

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247939

AMS Subject Classifications

Key words

Navigation