Abstract
We consider a version of the on-line bounded-space bin-packing problem where repacking the items within the active bins is allowed. For this problem, the 1.69103 lower bound of Lee and Lee [7] for the worst case ratios of bounded-space approximation algorithms still applies. We present a polynomial time approximation algorithm that reaches the best possible worst case ratio matching the Lee and Lee lower bound while using onlythree active bins.
Zusammenfassung
Wir behandeln eine Variante des On-Line Bound-Space Bin-Packings, in der das Umpacken der Gegenstände innerhalb der aktiven Bins erlaubt ist. Auch für diese Variante gilt die untere Schranke 1.69103, die Lee und Lee [7] für Worst Case Ratios von Bounded-Space Approximations-Algorithmen bewiesen haben. Wir konstruieren einen bestmöglichen polynomialen Approximations-Algorithmus, der die Schranke von Lee und Lee erreicht und dazu nurdrei aktive Bins verwendet.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Csirik, J., Imreh, B.: On the worst-case performance of the NkF bin-packing heuristic. Acta Cybernetica9, 89–105 (1989).
Csirik, J., Johnson, D. S.: Bounded space on-line bin packing: Best ist better than First. Proc. 2nd Ann. ACM-SIAM Symp. on Discrete Algorithms, San Francisco, January 1991.
Garey, M. R., Graham, R. L., Johnson, D. S., Yao, A. C. C.: Resource constrained scheduling as generalized bin packing. J. Comb. Th. Ser. A.21, 257–298 (1976).
Golomb, S.: On certain non-linear recurring sequences. American Math. Monthly70, 403–405 (1963).
Johnson, D. S.: Fast algorithms for bin packing. J. Comput. System Sci.8, 272–314 (1974).
Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., Graham, R. L.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput.3, 256–278 (1974).
Lee, C. C., Lee, D. T.: A simple on-line bin-packing algorithm. J. Assoc. Comput. Mach.32, 562–572 (1985).
Woeginger, G. J.: Improved space for bounded-space on-line bin-packing. Technical Report No. 187, TU Graz, 1991.
Author information
Authors and Affiliations
Additional information
This paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr. 2037).
Rights and permissions
About this article
Cite this article
Galambos, G., Woeginger, G.J. Repacking helps in bounded space on-line bind-packing. Computing 49, 329–338 (1993). https://doi.org/10.1007/BF02248693
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02248693