Abstract
In two papers Holyhead et al. (1975, 1976) analyzed the convergence of general linear multistep methods under minimum continuity assumptions. This paper is concerned with determining the maximum orders of convergence of these methods given that the truncation error has an asymptotic expansion with sufficiently many terms.
Zusammenfassung
Die Konvergenzeigenschaften von linearen Mehrschrittverfahren für Volterrasche Integralgleichungen erster Art mit minimalen Stetigkeitsbedingungen wurden in zwei Arbeiten von Holyhead et al. (1975, 1976) analysiert. Die vorliegende Arbeit beschäftigt sich, unter der Voraussetzung, daß der Diskretisierungsfehler eine hinreichende asymptotische Entwicklung besitzt, mit der Frage nach der maximalen Konvergenzordnung.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andrade, C.: Métodos lineares de passo múltiplo estáveis e de alta precisão aplicados a: —equações diferenciais ordinárias, equações integrais, equações diferenciais parciais. Ph. D. Thesis, University of Saõ Paulo, 1977.
Andrade, Celia, McKee, S.: On optimal high accuracy linear multistep methods for first kind Volterra integral equations. BIT (to appear).
Anselone, P. (ed.): Nonlinear Integral Equations. Madison: University of Wisconsin Press 1964.
Apostol, T. M.: Mathematical Analysis. Addison-Wesley 1958.
Donelson, J., Hansen, E.: Cyclic composite multistep predictor-corrector methods. SINUM8, 137–157 (1971).
Gladwin, C. J.: Methods of high order for the numerical solution of first kind Volterra integral equations, in: Proc. Second Manitoba Conf. Numer. Math., Univ. of Manitoba, Winnipeg, 1972, pp. 179–193.
Gladwin, C. J.: Some remarks on the numerical solution of first kind Volterra integral equations, in: Proc. Third Manitoba Conf. Numer. Math., Univ. of Manitoba, Winnipeg, 1973, pp. 223–237.
Holyhead, P. A. W., McKee, S., Taylor, P. J.: Multistep methods for solving linear Volterra integral equations of the first kind. SINUM12, 698–711 (1975).
Holyhead, P. A. W., McKee, S.: Stability and convergence of multistep methods for linear Volterra integral equations of the first kind. SINUM13, 269–292 (1976).
Linz, P.: Numerical methods for Volterra integral equations of the first kind. Comput. J.12, 393–397 (1969).
McKee, S.: The linear algebra of discretisation methods (submitted for publication).
Stetter, H. J.: Analysis of Discretisation Methods for Ordinary Differential Equations. Berlin-Heidelberg-New York: Springer 1973.
Yosida, K.: Lectures on Differential and Integral Equations. Wiley Interscience 1960.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
McKee, S. Best convergence rates of linear multistep methods for Volterra first kind equations. Computing 21, 343–358 (1979). https://doi.org/10.1007/BF02248734
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02248734