Skip to main content
Log in

Finite difference schemes on grids with local refinement in time and space for parabolic problems I. Derivation, stability, and error analysis

Differenz-Schemata für parabolische Probleme auf Gittern mit Lokaler Verdichtung in Zeit und Raum

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Finite difference schemes for parabolic initial value problems on cell-centered grids in space (rectangular for two space dimensions) with regular local refinement in space as in time are derived and their stability and convergence properties are studied. The construction of the finite difference schemes is based on the finite volume approach by approximation of the balance equation. Thus the derived schemes preserve the mass (or the heat).

The approximation at the grid points near the fine and coarse grid interface is based on the approach proposed by the authors in a previous paper for selfadjoint elliptic equations.

The proposed schemes are implicit of backward Euler type and are shown to be unconditionally stable. Error analysis is also presented.

Zusammenfassung

Es werden Differenzenverfahren für parabolische Anfangswertprobleme für zellenorientierte räumliche Gitter (rechteckig für zwei Raumdimensionen) mit regulärer lokaler Verfeinerung bzgl. Zeit und Raum vorgestellt. Ihre Stabilitäts- und Konvergenzeigenschaften werden studiert. Die Differenzenverfahren basieren auf der Idee der finiten Volumina durch Approximation der Bilanzgleichungen und erhalten die Masse (bzw. die Energie).

Die Approximation an den Gitterpunkten nahe der Überschneidung von feineren und gröberen Gittern verwendet eine frühere Idee der Autoren für selbstadjungierte elliptische Operatoren.

Die vorgeschlagenen Verfahren sind implizit vom Typ “Euler rückwärts” und unkonditioniert stabil. Eine Fehleranalyse ist angeschlossen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.

    Google Scholar 

  2. Aziz, K., Settari, A.: Petroleum Reservior Simulation, London: Applied Science Publishers 1979.

    Google Scholar 

  3. Babuska, I., Rheinboldt, W. C.: A posteriori error estimates for the finite element method. Int. J. Numer. Meth.,12 (1978), 1597–1615.

    Google Scholar 

  4. Babuska, I., Rheiboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.,15 (4) (1978), 736–754.

    Google Scholar 

  5. Bramble, J. H., Ewing, R. E., Pasciak, J. E., Schatz, A. H.: A preconditioning technique for the efficient solution of problems with local grid refinement. Comp. Meth. Appl. Eng.,67 (1988), 149–159.

    Google Scholar 

  6. Diaz, A. R., Kikuchi, N., Taylor, J. I.: A method of grid optimization for finite element methods. Comp. Meth. Appl. Mech. Eng.,41 (1983), 29–45.

    Google Scholar 

  7. Ewing, R. E.: Efficient adaptive procedures for fluid flow applications. Comp. Meth. Appl. Mech. Eng.,55 (1986), 89–103.

    Google Scholar 

  8. Ewing, R. E., Lazarov, R. D., Vassilevski, P. S.: Local refinement techniques for elliptic problems on cell-centered grids. Preprint #1988-16, Institute for Scientific Computation, University of Wyoming, 1988.

  9. Kreiss, H. O., Manteuffel, T. A., Swartz, B., Wendroff, B., White, A. B. Jr.: Superconvergence schemes on irregular grid. Math. Comput.,47 (1986), 537–554.

    Google Scholar 

  10. Manteuffel, T. A., White, A. B. Jr.: The numerical solution of second order boundary value problems on nonuniform meshes. Math. Comput.,47 (1986), 511–535.

    Google Scholar 

  11. McCormick, S.: Fast adaptive composite grid (FAC) methods: theory for the variational case. Comput. Suppl.,5 (1984), 115–121.

    Google Scholar 

  12. McCormick, S., Thomas, J.: The fast adaptive composite grid (FAC) method for elliptic equations. Math. Comput.,46 (1986), 439–456.

    Google Scholar 

  13. Oden, J. T., Demkowicz, L., Strouboulis, T., Devloo, P.: Adaptive methods for problems in solid and fluid mechanics. In Accuracy Estimates and Adaptive Refinement in Finite Element Computations, I. Babuska et al., eds., Wiley, New York, 1986, 249–280.

    Google Scholar 

  14. Pedrosa, O. A. Jr.: Use of Hybrid Grid in Reservoir Simulation, Ph.D. Thesis, Stanford University, 1984.

  15. Quandalle, P., Besset, P.: Reduction of grid effects due to local sub-gridding in simulations using a composite grid. Paper SPE 13527, presented at the SPE 1985 Reservoir Simulation Symposium, Dallas, February 1985.

  16. Samarskii, A. A.: Homogeneous difference schemes on non-uniform nets for equations of parabolic type. USSR Comput. Math. and Math. Phys.,3 (1963), 351–393.

    Google Scholar 

  17. Samarskii, A. A.: Introduction to Theory of Difference Schemes, p. 468, Moscow: Nauka 1971 (Russian).

    Google Scholar 

  18. Samarskii, A. A.: Local one dimensional difference schemes on non-uniform nets. USSR Comput. Math. and Math. Phys.,3 (1963), 572–619.

    Google Scholar 

  19. Samarskii, A. A., Lazarov, R. D., Makarov, V. L.: Difference Schemes for Differential Equations having Generalized Solutions, p. 296, Moscow: Vysshaya Shkola Publishers, 1987 (Russian).

    Google Scholar 

  20. Tikhonov, A. N., Samarskii, A. A.: Homogeneous difference schemes on nonuniform nets. USSR Comput. Math. Phys.,2 (1962), 927–953.

    Google Scholar 

  21. Weiser, A., Wheeler, M. F.: On convergence of block-centered finite-differences for elliptic problems. SIAM J. Numer. Anal.,25 (1988), 351–375.

    Google Scholar 

  22. Eriksson, K.: Adaptive finite element methods for linear parabolic problems. II. A priori error estimates ofL (L 2). Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, 1988.

    Google Scholar 

  23. Eriksson, K.: Adaptive finite element methods for linear parabolic problems. III. A priori error estimates inL (L ). Technical Report, Department of Mathematics, Chalmers University of Technology, Goteborg, 1988.

    Google Scholar 

  24. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV. Time steps variable in space (to appear).

  25. Herox, M. A., Thomas, J. W.: TDFAC: A composite grid method for time dependent problems. Proceedings Fourth Copper Mountain Conference on Multigrid Methods, 1989.

  26. Ewing, R. E., Lazarov, R. D., Pasciak, J. E., Vassilevski, P. S.: Finite element methods for parabolic problems with time steps variable in space. Preprint #1989-05, Institute for Scientific Computation, University of Wyoming, 1989.

  27. Matus, P. P.: On a class of difference schemes for transient boundary value problems. Inst. Math., Minsk Acad. Sci. BSSR, Preprint23, 1989.

  28. Ewing, R. E., Lazarov, R. D., Vassilevski, P. S.: Finite difference schemes on grids with local refinement in time and space for parabolic problems. II: Optimal order two-grid iterative methods. Proceedings, Sixth GAMM Seminar on Parallel Methods for PDEs, Kiel, January 22–24, 1990, to appear in Notes in Numerical Fluid Mechanics, Vieweg-Braunsweig, 1990.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewing, R.E., Lazarov, R.D. & Vassilevski, P.S. Finite difference schemes on grids with local refinement in time and space for parabolic problems I. Derivation, stability, and error analysis. Computing 45, 193–215 (1990). https://doi.org/10.1007/BF02250633

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02250633

AMS Subject Classification

Key words

Navigation