Abstract
In this paper a finite algebraic formula for the solution of the matrix equationAX−XB=C is derived. Based on it, a new direct algorithm is given.
Zusammenfassung
Angegeben wird eine algebraische Formel für die Lösung der GleichungAX−XB=C und ein auf ihr basierender Lösungsalgorithmus.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gantmacher, F. R.: The theory of matrices. Gosud. Izdat. Techn.-Teor. Lit., Moscow (1954).
Kreisselmeier, G.: A solution of the bilinear matrix equationAY+YB=−Q. SIAM. J. Appl. Math., Vol. 23, No. 3, Nov. 1972.
Jones, J. Jr., Lew, C.: Solutions of the Lyapunov matrix equationBX−XA=C. IEEE Trans. Automat Contr.AC-27, 464–466 (1982).
Golub, G. H., Nash, S., Van Loan, C.: A Hessenberg-Schur method for the problemAX+XB=C. IEEE Trans. Automat Contr.AC-24, 909–913 (1979).
Hoskins, W. D., Meek, D. S., Walton, D. J.: The numerical solution of the matrix equationXA+AY=F. BIT17, 184–190 (1977).
Deif, A. S.: Advanced matrix theory for scientists and engineers. First published in 1982 by ABACUS Press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tongxing, L. Solution of the matrix equation AX−XB=C. Computing 37, 351–355 (1986). https://doi.org/10.1007/BF02251092
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02251092