Abstract
This paper deals withB-convergence analysis of linearly implicit Runge-Kutta methods as applied to stiff, semilinear problems of the formy′(t)=Ty(t)+g(t,y). We analyse the discrepancy between the local and global order reduction. We show that linearly implicit Runge-Kutta methods ofB-consistency orderq have theB-convergence orderq+1 for many singularly perturbed problems with constant stiff part. Numerical examples illustrate the theoretical results.
Zusammenfassung
Die Arbeit befaßt sich mitB-Konvergenzuntersuchungen linear impliziter Runge-Kutta-Verfahren, angewandt auf steife semilineare Differentialgleichungen der Gestalty′(t)=Ty(t)+g(t,y). Es wird die Diskrepanz zwischen lokaler und globaler Ordnungsreduktion analysiert. Wir zeigen, daß linear implizite Runge-Kutta-Methoden derB-Konvergenzordnungq für eine gewisse Klasse singulär gestörter Probleme mit konstant steifem Anteil dieB-Konvergenzordnungq+1 besitzt. Numerische Beispiele bestätigen die theoretischen Resultate.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Burrage, K., Hundsdorfer, W. H., Verwer, J. G.: A study of B-convergence of Runge-Kutta methods. Computing36, 17–34 (1986).
Collatz, L.: Functional Analysis and Numerical Mathematics, New York-San Francisco-London: Academic Press 1966.
Dekker, K., Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nolinear Differential Equations. Amsterdam: North-Holland Publ. Co. 1984.
Dekker, K., Kraaijevanger, J. F. B. M., Spijker, M. N.: The order of B-convergence of the Gaussian Runge-Kutta methods. Computing36, 35–41 (1986).
Frank, R., Schneid, J., Ueberhuber, C. W.: The concept of B-convergence. SIAM J. Numer. Anal.18, 753–780 (1981).
Hairer, E., Bader, G., Lubich, Ch.: On the stability of semi-implicit methods for ordinary differential equations. BIT22, 211–232 (1982).
Hundsdorfer, W. H.: Stability and B-convergence of linearly implicit Runge-Kutta methods. Numer. Math.50, 83–95 (1986).
Kraaijevanger, J. F. B. M.: B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT25, 652–666 (1985).
Stetter, H. J.: Zur B-Konvergenz der impliziten Trapez- und Mittelpunktregel (unpublished note).
Strehmel, K., Weiner, R.: B-convergence results for linearly implicit one step methods. BIT27, 264–281 (1987).
Strehmel, K., Weiner, R.: Partitioned adaptive Runge-Kutta methods and their stability. Numer. Math.45, 283–300 (1984).
Ström, T.: On logarithmic norms. SIAM J. Numer. Anal.12, 741–753 (1975).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Strehmel, K., Weiner, R. & Dannehl, I. A study ofB-convergence of linearly implicit Runge-Kutta methods. Computing 40, 241–253 (1988). https://doi.org/10.1007/BF02251252
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02251252