Abstract
Recent work has established that for certain classes of nonlinear boundary value problems, the number of Newton iterations applied to the related standard discrete problem for a given tolerance is independent of the mesh size when the mesh is sufficiently fine. This paper develops an extension of the mesh independence principle by relaxing the assumption on the differential equation, its boundary conditions, and the related difference approximation.
Zusammenfassung
Wie kürzlich gezeigt wurde, ist bei gewissen Klassen von nichtlinearen Randwertproblemen die Anzahl der Newton-Iterationen bei der Lösung der zugehörigen Standard-Diskretisierung für eine gegebene Toleranz unabhängig von der Gitterweite, wenn das Gitter hinreichend fein ist. In der Arbeit wird dieses Gitterunabhängigkeitsprinzip durch Abschwächung der Voraussetzungen über die Differentialgleichung, die Randbedingungen und die zugehörige Differenzenapproximation verallgemeinert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Allgower, E. L., McCormick, S. F.: Newton's method with mesh refinements for numerical solution of nonlinear two-point boundary value problems. Numer. Math.29, 237–260 (1978).
Collatz, L.: The numerical treatment of differential equations, 3. Aufl. Berlin-Heidelberg-New York: Springer 1966.
Daniel, J. W., Martin, A. J.: Implementing deferred corrections for Numerov's difference method for second-order two-point boundary value problems. Report CNA-107, November, 1975, Center for Numerical Analysis, University of Texas, at Austin.
McCormick, S. F.: A revised mesh refinement strategy for Newton's method applied to non-linear two-point boundary value problems, in: Numerical treatment of differential equations in applications (Ansorge, R., Tornig, W., Hrsg.)., (Lecture Notes in Mathematics, Vol. 679). Berlin-Heidelberg-New York: Springer 1978.
Author information
Authors and Affiliations
Additional information
This work was supported by the National Science Foundation under grant number MCS76-09215.
Rights and permissions
About this article
Cite this article
Allgower, E.L., St. McCormick, F. & Pryor, D.V. A general mesh independence principle for Newton's method applied to second order boundary value problems. Computing 23, 233–246 (1979). https://doi.org/10.1007/BF02252130
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252130