Skip to main content

Advertisement

Log in

On theQ-order of convergence for coupled sequences arising in iterative numerical processes

Über dieQ-Ordnung gekoppelter Folgen, die bei numerischen Iterationsverfahren auftreten

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

We are considering iterative numerical algorithms which allow a certain type of error-recurrences. Our model contains total-step, single-step, parallel, and simultaneous methods for different problems. Assigning a non-negative matrix to these error-recurrences we are able to give estimates for theQ-order of convergence of the underlying methods for each component by applying results from matrix theory. Some examples for concrete methods where our model applies will be given.

Zusammenfassung

Wir betrachten solche iterative numerische Prozesse, welche eine gewisse Art von nichtlinearen Fehlerrekursionen haben. Unser Modell umfaßt Gesamtschritt-, Einzelschritt-, Parallel- und Simultanverfahren für eine Reihe von Problemen. Diesen Fehlerrekursionen wird eine nichtnegative Matrix zugeordnet, aus welcher unter Zuhilfenahme von Resultaten der Matrixtheorie Abschätzungen für dieQ-Ordnung der zugrundeliegenden Methoden in jeder Komponente hergeleitet werden. Es werden konkrete Verfahren angegeben, bei welchen unser Modell Anwendung finden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alefeld, G., Herzberger, J.: On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots. SIAM J. Numer. Anal.11, 237–243 (1974).

    Google Scholar 

  2. Feldstein, A., Traub, J. F.: Asymptotic behavior of vector recurrences with applications. Math. Comp.31, 180–192 (1977).

    Google Scholar 

  3. Herzberger, J.: Über Matrixdarstellungen für Iterationsverfahren bei nichtlinearen Gleichungen. Computing12, 215–222 (1974).

    Google Scholar 

  4. Issacson, E., Keller, H.: Analyse numerischer Verfahren. Leipzig: Edition Leipzig, 1972.

    Google Scholar 

  5. Kielbasinski, A., Schwetlick, H.: Numerische lineare Algebra. Thun: Verlag Harri Deutsch, 1988.

    Google Scholar 

  6. Metzner, L.: Untersuchungen zur Berechnung der Konvergenzordnungen von iterativen numerischen Prozessen. Diplom-Thesis, Universität Oldenburg, 1995.

  7. Potra, F.-A.: OnQ-order andR-order of convergence. J. Optim. Theory Appl.63, 415–431 (1989).

    Google Scholar 

  8. Rice, J. R.: Matrix representations of nonlinear equation iterations. Math Comp.25, 639–647 (1971).

    Google Scholar 

  9. Traub, J. F.: Iterative methods for the solution of equations. Englewood-Cliffs: Prentice-Hall, 1964.

    Google Scholar 

  10. Wilkinson, J.: The ablegraic eigenvalue problem. Oxford: Clarendon Press, 1988.

    Google Scholar 

  11. Herzberger, J., Metzner, L.: On the Q-order and R-order of convergence for coupled sequences arising in iterative numerical processes. In: Numerical methods and error bounds (Alefeld, G., Herzberger, J. Eds.), pp. 120–131. Berlin: Akademie Verlag, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzberger, J., Metzner, L. On theQ-order of convergence for coupled sequences arising in iterative numerical processes. Computing 57, 357–363 (1996). https://doi.org/10.1007/BF02252254

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252254

AMS Subject Classifications

Key words