Skip to main content
Log in

Untersuchungen des Zeitgewinns durch neue Algorithmen zur Matrix-Multiplikation

Investigations of speed-ups by new algorithms for matrix multiplication

  • Published:
Computing Aims and scope Submit manuscript

Zusammenfassung

Diese Arbeit soll eine Übersicht über den möglichen Zeitgewinn geben, der durch den Einsatz der schnelleren Matrix-Multiplikationen von S. Winograd und V. Straßen erzielbar ist. Implementierungsfragen werden besprochen und der benötigte Zusatzspeicher wird ermittelt. Die Abschätzungen beruhen auf einem Rechner-Modell, welches den heutigen Rechenanlagen nachgebildet ist, und liefern daher realistische Ergebnisse.

Abstract

This papers gives a survey of possible speed-ups of matrix-multiplication by the methods due to S. Winograd and V. Straßen. Questions of implementation of the algorithms are investigated and formulas for the required additional core-memory are given. By using a machine model which is similar to existing computers the results given are of practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Brent, R. P.: Error Analysis of Algorithms for Matrix Multiplication and Triangular Decomposition using Winograd's Identity. Numer. Math.16, 145–156 (1970).

    Google Scholar 

  2. Brent, R. P.: Algorithms for Matrix Multiplication. Tech. Report CS 157, Computer Sci. Dept., Stanford Uni. (1970).

  3. Engeler, E.: Introduction to the Theory of Computation. New York-London: Academic Press 1973.

    Google Scholar 

  4. Fischer, P. C.: Further Schemes for Combining Matrix Algorithms, in: Automata, Languages and Programming—2nd Colloquium (Loeckx, J., Hrsg.), University of Saarbrücken. Lecture Notes in Computer Science (1974).

  5. Fischer, P. C., Probert, R. L.: Efficient Procedures for Using Matrix Algorithms. Erschienen wie [4]. Automata, Languages and Programming—2nd Colloquium (Loeckx, J., Hrsg.), University of Saarbrücken. Lecture Notes in Computer Science (1974).

  6. Hopcroft, J. E., Kerr, L. B.: On Minimizing the Number of Multiplications Necessary for Matrix Multiplication. Cornell University Tech. Rep. 69-44 (1969).

  7. Probert, R. L.: On the Complexity of Matrix Multiplication. University of Waterloo, Ontario, Tech. Report CS-73-27 (1973).

    Google Scholar 

  8. Straßen, V.: Gaussian Elimination is not Optimal. Numer. Math.13, 354–356 (1969).

    Article  Google Scholar 

  9. Winograd, S.: On the Number of Multiplications Required to Compute Certain Functions. Proc. Nat. Acad. Sci. USA5, 1840–1842 (1967).

    Google Scholar 

  10. Winograd, S.: A new algorithm for inner product. IEEE Trans. on Computers17, 693–694 (1968).

    Google Scholar 

  11. Winograd, S.: On Multiplication of 2×2 Matrices. Linear Algebra and Its Applications,4, 381–388 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diese Arbeit entstand in der Gesellschaft für wiss. Datenverarbeitung m. b. H. Göttingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spieß, J. Untersuchungen des Zeitgewinns durch neue Algorithmen zur Matrix-Multiplikation. Computing 17, 23–36 (1976). https://doi.org/10.1007/BF02252257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252257