Skip to main content
Log in

On the behaviour of approximate Newton methods

Über das Verhalten der angenäherten Newtonschen Verfahren

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Newton's method for solving non linear operator equations requests at each step the solution of a linear equation. When these equations are solved only approximately we have a so called Approximate Newton Method (A.N.M.). In this paper we examine the convergence and the order of convergence of A.N.M.'s under Kantorovich type hypotheses, giving criteria for controlling the behaviour of the iterations. Moreover a posteriori error estimates are proposed. The application of the general results to the case of Newton-Iterative methods is illustrated.

Zusammenfassung

Der klassische Newtonalgorithmus zur Lösung nichtlinearer Gleichungen erfordert bei jedem Schritt die Lösung einer linearen Gleichung. Wenn diese Gleichungen nur angenähert gelöst werden, dann spricht man von einem angenäherten Newtonschen Verfahren. In der vorliegenden Arbeit werden die Konvergenz und deren Ordnung bei den obengenannten Verfahren untersucht und Abschätzungen der Fehler angegeben. Die Resultate der theoretischen Untersuchungen werden auf Newton-Iterationsverfahren angewandt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bank, R. E., Rose, D. J.: Global approximate Newton Methods. Numer. Math.37, 279–295 (1981).

    Article  Google Scholar 

  2. Dembo, R. S., Eisenstat, S. C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal.19, 400–408 (1982).

    Article  Google Scholar 

  3. Ypma, T. J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal.21, 583–590 (1984).

    Article  Google Scholar 

  4. Moret, I.: A note on Newton type iterative methods. Computing33, 65–73 (1984).

    Article  Google Scholar 

  5. Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  6. Rall, L. B.: A note on the convergence of Newton's method. SIAM J. Numer. Anal.11, 34–36 (1974).

    Article  Google Scholar 

  7. Sherman, A. H.: On Newton-Iterative methods for the solution of systems of nonlinear equations. SIAM J. Numer. Anal.15, 755–771 (1978).

    Article  Google Scholar 

  8. Steihaug, T.: Quasi-Newton methods for large scale non linear problems. Ph. D. Thesis, School of Organization and Management, Yale University, New Haven, CT, 1981.

    Google Scholar 

  9. Young, D. M.: Iterative Solution of Large Linear Systems. New York: Academic Press 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moret, I. On the behaviour of approximate Newton methods. Computing 37, 185–193 (1986). https://doi.org/10.1007/BF02252511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252511

AMS Subject Classification

Key words