Abstract
In this note we are considering a class of recurrences which is a generalization of those in [3]. Estimates for theirR-order are derived and the results are then applied to a family of higher-order interval methods for the inclusion of the inverse of a matrix. An efficient algorithm is determined.
Zusammenfassung
Wir betrachten hier eine Klasse von Rekursionsfolgen, die eine Verallgemeinerung von den in [3] behandelten ist. Dazu werden Abschätzungen für dieR-Ordnung hergeleitet und dann auf eine Klasse von Iterationsverfahren zur Einschließung der Inversen einer Matrix angewendet.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Albrecht, J.: Bemerkungen zum Iterationsverfahren von Schulz zur Matrixinversion. Z. Angew. Math. Mech.41, 262–263 (1961).
Alefeld, G., Herzberger, J.: Introduction to Interval Computations. New York: Academic Press 1983.
Herzberger, J.: On theR-order of some recurrences with applications to inclusion-methods. Computing36, 175–180 (1986).
Herzberger, J.: Über ein intervallmäßiges Newton-Verfahren. Z. Angew. Math. Mech. 66 (to appear).
Ortega, J. W., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.
Schmidt, J. W.: On theR-order of coupled squences. Computing26, 333–342 (1981).
Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, N.J.: Prentice-Hall 1964.
Added in proof
Burmeister, W., Schmidt, J. W.: Characterization of the bestR-orders of coupled sequences arising in iterative processes. Numerical Methods and Applications '84, Sofia, 191–202 (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Herzberger, J. On the R-order of some recurrences with applications to inclusion-methods II. Computing 37, 255–259 (1986). https://doi.org/10.1007/BF02252516
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252516