Skip to main content
Log in

On the R-order of some recurrences with applications to inclusion-methods II

Über die R-Ordnung einiger Rekursionsfolgen bei Einschließungsverfahren II

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this note we are considering a class of recurrences which is a generalization of those in [3]. Estimates for theirR-order are derived and the results are then applied to a family of higher-order interval methods for the inclusion of the inverse of a matrix. An efficient algorithm is determined.

Zusammenfassung

Wir betrachten hier eine Klasse von Rekursionsfolgen, die eine Verallgemeinerung von den in [3] behandelten ist. Dazu werden Abschätzungen für dieR-Ordnung hergeleitet und dann auf eine Klasse von Iterationsverfahren zur Einschließung der Inversen einer Matrix angewendet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Albrecht, J.: Bemerkungen zum Iterationsverfahren von Schulz zur Matrixinversion. Z. Angew. Math. Mech.41, 262–263 (1961).

    Google Scholar 

  2. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. New York: Academic Press 1983.

    Google Scholar 

  3. Herzberger, J.: On theR-order of some recurrences with applications to inclusion-methods. Computing36, 175–180 (1986).

    Article  Google Scholar 

  4. Herzberger, J.: Über ein intervallmäßiges Newton-Verfahren. Z. Angew. Math. Mech. 66 (to appear).

  5. Ortega, J. W., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press 1970.

    Google Scholar 

  6. Schmidt, J. W.: On theR-order of coupled squences. Computing26, 333–342 (1981).

    Article  Google Scholar 

  7. Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, N.J.: Prentice-Hall 1964.

    Google Scholar 

Added in proof

  1. Burmeister, W., Schmidt, J. W.: Characterization of the bestR-orders of coupled sequences arising in iterative processes. Numerical Methods and Applications '84, Sofia, 191–202 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzberger, J. On the R-order of some recurrences with applications to inclusion-methods II. Computing 37, 255–259 (1986). https://doi.org/10.1007/BF02252516

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252516

AMS Subject Classifications

Key words