Skip to main content

Advertisement

Log in

A note on locating eigenvalues

Eine Bemerkung über die Lokalisierung von Eigenwerten

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The numbers of the roots of det (B-λA) in different portions of the real axis are determined, whereA andB are Hermitian matrices andB is positive definite. The result is an extension of a theorem by Xiaoshu and Hua [4].

Zusammenfassung

Die Anzahl der Wurzeln von det (B-λA) in verschiedenen Teilen der reellen Achse wird bestimmt, woA undB Hermitesche Matrizen sind undB positiv definit ist. Das Resultat ist eine Verallgemeinerung eines Satzes von Xiaoshu und Hua [4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cottle, R. W.: Manifestations of the Schur complement. Linear Algebra Appl.8, 189–211 (1974).

    Article  Google Scholar 

  2. Hohn, F. E.: Elementary Matrix Algebra, 3rd ed., p. 473. New York: Macmillan 1973.

    Google Scholar 

  3. Noble, B.: Applied Linear Algebra, p. 396. Englewood Cliffs, N. J.: Prentice-Hall 1969.

    Google Scholar 

  4. Xiaoshu, P., Hua, D.: A theorem for locating eigenvalues. Computing35, 93–96 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Väliaho, H. A note on locating eigenvalues. Computing 37, 265–267 (1986). https://doi.org/10.1007/BF02252518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252518

AMS Subject Classifications

Key words