Skip to main content
Log in

An elementary noniterative quadrature-type method for the numerical solution of a nonlinear equation

Eine elementare nicht-iterative Quadratur-Typ Methode für die numerische Lösung einer nichtlinearen Gleichung

  • Short Communications
  • Published:
Computing Aims and scope Submit manuscript

Abstract

A simple noniterative method for the numerical determination of one simple root of a nonlinear differentiable algebraic or transcendental function along a finite real interval is proposed. This method is based on the computation of an integral involving the above function both by the Gauss- and the Lobatto-Chebyshev quadrature rules for regular integrals and equating the obtained results. The convergence of the method is proved under mild assumptions and numerical results for two classical transcendental equations are presented.

Zusammenfassung

Es wurde eine einfache nicht-iterative Methode für die numerische Berechnung einer einfachen Nullstelle einer nichtlinearen differenzierbaren algebraischen oder transzendenten Funktion längs eines endlichen reellen Intervalles vorgestellt. Die Methode gründet sich auf die Berechnung eines Integrales, das die Funktion enthält, mittels der Gauß- und der Lobatto-Tschebyscheff-Quadraturformeln und die anschließende gleichsetzung der erhaltenen Resultate. Die Konvergenz der Methode wird unter schwachen Annahmen bewiesen; numerische Resultate sind für zwei klassiche transzendente Gleichungen angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anastasselou, E. G., Ioakimidis, N. I.: Application of the Cauchy theorem to the location of zeros of sectionally analytic functions. Z. Angew. Math. Phys.35, 705–711 (1984).

    Article  Google Scholar 

  2. Chawla, M. M.: Error bounds for the Gauss-Chebyshev quadrature formula of the closed type. Math. Comp.22, 889–891 (1968).

    Google Scholar 

  3. Chawla, M. M., Ramakrishnan, T. R.: Modified Gauss-Jacobi quadrature formulas for the numerical evaluation of Cauchy type singular integrals. BIT14, 14–21 (1974).

    Article  Google Scholar 

  4. Davis, P. J., Rabinowitz, P.: Methods of Numerical Integration 1 st ed., pp. 99–102. New York: Academic Press 1975.

    Google Scholar 

  5. Householder, A. S.: The Numerical Treatment of a Single Nonlinear Equations, 1st ed. New York: McGraw-Hill 1970.

    Google Scholar 

  6. Ioakimidis, N. I.: Application of the Gauss quadrature rule to the numerical solution of nonlinear equations. Int. J. Computer Math.18, 311–322 (1986).

    Google Scholar 

  7. Ioakimidis, N. I., Anastasselou, E. G.: A simple quadrature-type method for the computation of real zeros of analytic functions in finite intervals. BIT25, 242–249 (1985).

    Article  Google Scholar 

  8. Ioakimidis, N. I., Papadakis, K. E.: A new simple method for the analytical solution of Kepler's equation. Celest. Mech.35, 305–316 (1985).

    Article  Google Scholar 

  9. Ioakimidis, N. I., Theocaris, P. S.: On the numerical evaluation of Cauchy principal value integrals. Rev. Roumaine Sci. Tech. Sér. Méc. Appl.22, 803–818 (1977).

    Google Scholar 

  10. Kopal, Z.: Numerical Analysis, 2nd ed., pp. 383–384 396 London: Chapman & Hall 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioakimidis, N.I., Anastasselou, E.G. An elementary noniterative quadrature-type method for the numerical solution of a nonlinear equation. Computing 37, 269–275 (1986). https://doi.org/10.1007/BF02252519

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252519

AMS Subject Classifications

Key words