Abstract
A simple noniterative method for the numerical determination of one simple root of a nonlinear differentiable algebraic or transcendental function along a finite real interval is proposed. This method is based on the computation of an integral involving the above function both by the Gauss- and the Lobatto-Chebyshev quadrature rules for regular integrals and equating the obtained results. The convergence of the method is proved under mild assumptions and numerical results for two classical transcendental equations are presented.
Zusammenfassung
Es wurde eine einfache nicht-iterative Methode für die numerische Berechnung einer einfachen Nullstelle einer nichtlinearen differenzierbaren algebraischen oder transzendenten Funktion längs eines endlichen reellen Intervalles vorgestellt. Die Methode gründet sich auf die Berechnung eines Integrales, das die Funktion enthält, mittels der Gauß- und der Lobatto-Tschebyscheff-Quadraturformeln und die anschließende gleichsetzung der erhaltenen Resultate. Die Konvergenz der Methode wird unter schwachen Annahmen bewiesen; numerische Resultate sind für zwei klassiche transzendente Gleichungen angegeben.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anastasselou, E. G., Ioakimidis, N. I.: Application of the Cauchy theorem to the location of zeros of sectionally analytic functions. Z. Angew. Math. Phys.35, 705–711 (1984).
Chawla, M. M.: Error bounds for the Gauss-Chebyshev quadrature formula of the closed type. Math. Comp.22, 889–891 (1968).
Chawla, M. M., Ramakrishnan, T. R.: Modified Gauss-Jacobi quadrature formulas for the numerical evaluation of Cauchy type singular integrals. BIT14, 14–21 (1974).
Davis, P. J., Rabinowitz, P.: Methods of Numerical Integration 1 st ed., pp. 99–102. New York: Academic Press 1975.
Householder, A. S.: The Numerical Treatment of a Single Nonlinear Equations, 1st ed. New York: McGraw-Hill 1970.
Ioakimidis, N. I.: Application of the Gauss quadrature rule to the numerical solution of nonlinear equations. Int. J. Computer Math.18, 311–322 (1986).
Ioakimidis, N. I., Anastasselou, E. G.: A simple quadrature-type method for the computation of real zeros of analytic functions in finite intervals. BIT25, 242–249 (1985).
Ioakimidis, N. I., Papadakis, K. E.: A new simple method for the analytical solution of Kepler's equation. Celest. Mech.35, 305–316 (1985).
Ioakimidis, N. I., Theocaris, P. S.: On the numerical evaluation of Cauchy principal value integrals. Rev. Roumaine Sci. Tech. Sér. Méc. Appl.22, 803–818 (1977).
Kopal, Z.: Numerical Analysis, 2nd ed., pp. 383–384 396 London: Chapman & Hall 1961.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ioakimidis, N.I., Anastasselou, E.G. An elementary noniterative quadrature-type method for the numerical solution of a nonlinear equation. Computing 37, 269–275 (1986). https://doi.org/10.1007/BF02252519
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02252519