Abstract
Points can be generated uniformly in a compact setA ofR d by constructing a fine rectangular grid coveringA, selecting a grid rectangle, and performing an acceptance test if the rectangle in question is not entirely contained inA. For very fine grids, the acceptance test is needed with very small probability. We look at the storage requirements and expected time performance of this method, and apply it in avoidance problems and in the design of fast generators for random variates with a bounded density on [0, 1].
Zusammenfassung
Punkte, die in einer komplexen TeilmengeA vonR d gleich verteilt sind, können auf folgende Weise erzeugt werden: Wir überdeckenA mit einem engmaschigen Rechteckgitter und führen einen Annahmetest aus, wenn das betrachtete Rechteck nicht zur Gänze inA enthalten ist. Für sehr engmaschige Gitter wird dieser Annahmetest mit sehr kleiner Wahrscheinlichkeit aufgerufen. Wir untersuchen den Speicherbedarf und die mittlere Zeitkomplexität dieser Methode und wenden das Verfahren auf Probleme mit verbotenen Teilmengen und auf schnelle Generatoren für Zufallsveränderliche mit beschränkter Dichte in [0, 1] an.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aho, A. V., Hopcroft, J. E., Ullman, J. D.:Data Structures and Algorithms. Reading, Mass.: Addison-Wesley 1983.
Chen, H. C., Asau, Y.: On generating random variates from an empirical distribution. AIIE Transactions6, 163–166 (1974).
Dvoretzky, A., Robbins, H.: On the parking problem. Publications of the Mathematical Institute of the Hungarian Academy of Sciences9, 209–225 (1964).
Lotwick, H. W.: Simulation of some spatial hard core models and the complete packing problem. Journal of Statistical Computation and Simulation15, 295–314 (1982).
Mannion, D.: Random space-filling in one dimension. Publications of the Mathematical Institute of the Hungarian Academy of Sciences9, 143–153 (1964).
Marsaglia, G.: Generating discrete random variables in a computer. Communications of the ACM6, 37–38 (1963).
Neumann, J. von: Various techniques used in connection with random digits. Collected Works, vol. 5, pp. 768–770, Pergamon Press, 1963. Also in: Monte Carlo Method, National Bureau of Standards Series12, 36–38 (1951).
Norman, J. E., Cannon, L. E.: A computer program for the generation of random variables from any discrete distribution.Journal of Statistical Computation and Simulation1, 331–348 (1972).
Peterson, A. V., Kronmal, R. A.: On mixture methods for the computer generation of random variables. The American Statistician36, 184–191 (1982).
Renyi, A.: On a one-dimensional problem concerning random space-filling. Publications of the Mathematical Institute of the Hungarian Academy of Sciences3, 109–127 (1958).
Ripley, B. D.: Simulating spatial patterns: dependent samples from a multivariate density. Journal of the Royal statistical Society, series C28, 109–112 (1979).
Walker, A. J.: An efficient method for generating discrete random variables with general distributions. ACM Transactions on Mathematical Software3, 253–256 (1977).
Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge: Cambridge University Press 1963.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Devroye, L. Grid methods in simulation and random variate generation. Computing 37, 71–84 (1986). https://doi.org/10.1007/BF02252735
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252735