Abstract
The proposed method generates standard normal variablesx. In 84.27% of all cases sampling from the centre\((|x| \leqslant \sqrt 2 )\) of the normal distribution is carried out using a variant ofJ. v. Neumann's algorithm for the generation of exponentially distributed random numbers. For sampling from the tails\((|x| > \sqrt 2 )\) the same method byJ. v. Neumann is combined with an acceptance-rejection approach ofG. Marsaglia.
Zusammenfassung
Die Methode erzeugt Zufallszahlen der standardisierten Normalverteilung. Für das Zentrum\(|x| \leqslant \sqrt 2 \) (84,27% aller Fälle) wird eine Variante des v.Neumannschen Vergleichsverfahrens zur Erzeugung exponentialverteilter Zufallszahlen vorgeschlagen. Für die Werte\(|x| > \sqrt 2 \) der Normalverteilung wird eine Verwerfungsmethode vonG. Marsaglia verwendet, bei der die majorisierende Funktion die Exponentialfunktion ist. Die dafür benötigten exponential-verteilten Zufallszahlen werden durch die ursprüngliche v.Neumann'sche Methode erzeugt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahrens, J. H., andU. Dieter: Computer Methods for Sampling from the Exponential and Normal Distributions. Comm. ACM15, 873–882 (1972).
Ahrens, J. H., U. Dieter, andA. Grube: Pseudo-Random Numbers: A New Proposal for the Choice of Multiplicators. Computing6, 121–138 (1970).
Box, G. E. P., andM. E. Muller: A Note on the Generation of Random Normal Deviates. Annals of Math. Statistics29, 610–611 (1958).
Dieter, U.: Pseudo-Random Numbers: The Exact Distribution of Pairs. Mathematics of Computation25, 855–884 (1971).
Dieter, U.: Pseudo-Random Numbers: Permutations of Triplets. Journal of Research, Nat. Bureau of Standards, SectionB 77 (1973).
Dieter, U., andJ. H. Ahrens: An Exact Determination of Serial Correlations of Pseudo-Random Numbers. Numer. Math.17, 101–123 (1971).
Forsythe, G. E.: Von Neumann's Comparison Method for Random Sampling from the Normal and Other Distributions. Mathematics of Computation26, 817–826 (1972).
Gebhardt, F.: Generating Normally Distributed Random Numbers by Inverting the Normal Distribution. Math. of Comp.18, 302–306 (1964).
Jansson, B.: Generation of Random Bivariate Normal Deviates and Computation of Related Integrals. BIT4, 205–212 (1964).
Jansson, B.: Random Number Generators. Stockholm: Almqvist and Wiksell. 1966.
Jöhnk, M. D.: Erzeugen und Testen von Zufallszahlen. Berichte aus dem Institut für Statistik und aus dem Institut für Angewandte Statistik der FU Berlin, Heft 6. Würzburg: Physica-Verlag. 1969.
Knuth, D. E.: The Art of Computer Programming, Vol. II, Seminumerical Algorithms. Reading, Mass.: Addison Wesley Comp. 1969.
MacLaren, M. D., G. Marsaglia, andT. A. Bray: A Fast Procedure for Generating Normal Random Variables. Comm. ACM7, 4–10 (1964).
Marsaglia, G.: Expressing a Random Variable in Terms of Uniform Random Variables. Annals of Math. Statistics32, 894–899 (1961).
Marsaglia, G.: Random Variables and Computers. Trans. Third Prague Conf. Information Theory, Statist. Decision Functions, Random Processes (Liblice, 1962), pp. 499–512. Prague: Publ. House Czech. Acad. Sci. 1964.
Marsaglia, G.: Generating a Variable from the Tail of the Normal Distribution. Technometrics6, 101–102 (1964).
Marsaglia, G., andT. A. Bray: A Convenient Method for Generating Normal Variables. SIAM Review6, 260–264 (1964).
Neumann, J. von: Various Techniques used in Connection with Random Digits. Monte-Carlo-Methods, Nat. Bur. Stand., AMS12, 36–38 (1951).
Author information
Authors and Affiliations
Additional information
Dedicated to Prof.H. Richter (München) on the occasion of his 60th birthday.
Rights and permissions
About this article
Cite this article
Dieter, U., Ahrens, J.H. A combinatorial method for the generation of normally distributed random numbers. Computing 11, 137–146 (1973). https://doi.org/10.1007/BF02252903
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252903