Abstract
Because complex arithmetic takes only a little more time than real arithmetic on modern computers it is advisable to take a closer look at some of the known mathematical tools and compare the advantages in complex computations.
This paper compares real and complex interpolation from the point of view of the application for larger problems. It shows that real interpolation breaks down very early whereas complex interpolation is superior by many orders of magnitude with regard to time as well as accuracy. It is shown theoretically that complex interpolation on the unit circle is the best that can be achieved.
Zusammenfassung
Die komplexe Arithmetik braucht nur ein wenig mehr Computerzeit als die reelle und es ist empfehlenswert, manche bekannte mathematische Verfahren und ihre Vorteile bei der Verwendung der komplexen Rechnungen zu untersuchen und zu vergleichen.
Dieser Beitrag untersucht die reelle und komplexe Interpolation von dem Standpunkt der Anwendung für größere Probleme. Er stellt klar, daß bei der Erhöhung des Polynomgrades die reelle Interpolation frühzeitig zusammenbricht, während die komplexe Interpolation um viele Größenordnungen in der Zeit und Genauigkeit der reellen überlegen ist. Es wird theoretisch bewiesen, daß die komplexe Interpolation an dem Einheitskreis die besterreichbare ist.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Berezin, I. S., and N. P. Zhidkov: Computing Methods. Pergamon Press. 1965.
Timan, A. F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press. 1963.
Ralston, A.: A First Course in Numerical Analysis. McGraw-Hill. 1965.
Cooley, J. W., P. A. W. Lewis, and P. D. Welch: The Finite Fourier Transform, IEEE Transactions on Audio- and Electroacoustics. Vol. AU-17, pp. 77–85, June 1969.
Walsh, J. L.: Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society, 2nd edition, 1956.
Cooley, J. W., and J. W. Tukey: An Algorithm for the Machine Calculation of Complex Fourier Series. Math. of Computation19, 297–301 (1965).
Cooley, J. W., P. A. W. Lewis, and P. D. Welch: The Fast Fourier Transform Algorithm and its Applications. IBM Corp., Research Paper RC-1743, 1967.
Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Oxford: Clarendon Press. 1965.
Singhal, K., and J. Vlach: Interpolation using the Fast Fourier Transform. Proc. IEEE60, 1558 (1972).
Cooley, J. W., P. A. W. Lewis, and P. D. Welch: The Fast Fourier Transform Algorithm: Programming Considerations in the Calculation of Sine, Cosine and Laplace Transforms. J. Sound and Vib.12, 315–337 (1970).
Gentleman, W. M., and G. Sande: Fast Fourier Transforms — for Fun and Profit. Fall Joint Computer Conf., 1966, AFIPS Proc., Vol. 29.
Kaneko, T., and B. Liu: Accumulation of Round-off Error in Fast Fourier Transforms. J. Assoc. Comp. Mach.17, 637 (1970).
Author information
Authors and Affiliations
Additional information
With 3 Figures
This work was supported by the National Research Council under grant A 7398.
Rights and permissions
About this article
Cite this article
Singhal, K., Vlach, J. Accuracy and speed of real and complex interpolation. Computing 11, 147–158 (1973). https://doi.org/10.1007/BF02252904
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02252904