Abstract
It is shown how to effectively implement a deterministic analog of a Monte Carlo method for approximating the extreme values of a function. Numerical examples in a four-dimensional setting illustrate the usefulness of the method.
Zusammenfassung
Es wird gezeigt, wie man ein deterministisches Analogon einer Monte-Carlo-Methode zur Annäherung der Extremwerte einer Funktion zielführend zur Anwendung bringt. Numerische Beispiele für den vierdimensionalen Fall illustrieren die praktische Nützlichkeit der Methode.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: Wiley- Interscience 1974.
Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc. (to appear Nov. 1978).
Niederreiter, H.: A quasi-Monte Carlo method for the approximate computation of the extreme values of a function. Paul Turán Memorial Volume (to appear).
Zieliński, R.: On the Monte Carlo evaluation of the extremal value of a function. Algorytmy2, no. 4, 7–13 (1965).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Niederreiter, H., McCurley, K. Optimization of functions by quasi-random search methods. Computing 22, 119–123 (1979). https://doi.org/10.1007/BF02253124
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253124