Abstract
Exact representations of errors and residuals of approximate solutions of linear algebraic systems under data perturbations and rounding errors of a floating-point arithmetic are established from which strict optimal a posteriori error and residual bounds are obtained. These bounds are formulated by means of a posteriori error and residual condition numbers. Condition numbers, error and residual bounds can be computed completely in the range of nonnegative numbers using the arithmetic operations+, x, / only. It is shown that computations in this range are numerically very stable. The general results are applied to a series of numerical examples.
Zusammenfassung
Exakte Darstellungen der Fehler und Residuen von Näherungslösungen linearer algebraischer Gleichungssysteme unter Datenstörungen und Rundungsfehlern einer Gleitpunktarithmetik werden hergeleitet, aus denen strikte, optimale, a posteriori Fehler- und Residuenschranken gewonnen werden. Diese Schranken verwenden a posteriori Fehler- und Residuenkonditionszahlen. Die Konditionszahlen, Fehler- und Residuenschranken können ganz im Bereich nichtnegativer Zahlen nur mit den arithmetischen Operatoren +, x, /berechnet werden. Es wird gezeigt, daß numerische Rechnungen dieser Art sehr stabil sind. Die allgemeinen Ergebnisse werden auf numerische Beispiele angewandt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Olver, F. W. J., Wilkinson, J. H.: A posteriori error bounds for Gaussian elimination. IMA J. Numer. Analysis2, 377–406 (1982).
Stummel, F.: Perturbation theory for evaluation algorithms of arithmetic expressions. Math. Comp.37, No. 156, 435–473 (1981).
Stummel, F.: Optimal error estimates for Gaussian elimination in floating-point arithmetic. Z. Angew. Math. Mech.62, No. 3/4, T355-T357 (1982).
Stummel, F.: Forward error analysis of the solutions of triangular linear systems and linear recurrences. Preprint, U Frankfurt, 1981.
Stummel, F.: Forward error analysis of Gaussian elimination. Part I: Error and residual estimates. Numer. Math.46, 365–395 (1985).
Stummel, F.: Strict optimal error estimates for Gaussian elimination. Z. Angew. Math. u. Mech.65, No. 5, T405-T407 (1985).
Stummel, F.: FORTRAN-programs for the rounding error analysis of Gaussian elimination. Centre for Mathematical Analysis, The Australian National University, Canberra, Research Report CMA-R02-85.
Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Englewood Cliffs: Prentice-Hall 1963.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Stummel, F. Strict optimal a posteriori error and residual bounds for Gaussian elimination in floating-point arithmetic. Computing 37, 103–124 (1986). https://doi.org/10.1007/BF02253185
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253185