Skip to main content
Log in

Strict optimal a posteriori error and residual bounds for Gaussian elimination in floating-point arithmetic

Strikte optimale a posteriori Fehler- und Residuenschranken für die Gauß-elimination in Gleitpunktarithmetik

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Exact representations of errors and residuals of approximate solutions of linear algebraic systems under data perturbations and rounding errors of a floating-point arithmetic are established from which strict optimal a posteriori error and residual bounds are obtained. These bounds are formulated by means of a posteriori error and residual condition numbers. Condition numbers, error and residual bounds can be computed completely in the range of nonnegative numbers using the arithmetic operations+, x, / only. It is shown that computations in this range are numerically very stable. The general results are applied to a series of numerical examples.

Zusammenfassung

Exakte Darstellungen der Fehler und Residuen von Näherungslösungen linearer algebraischer Gleichungssysteme unter Datenstörungen und Rundungsfehlern einer Gleitpunktarithmetik werden hergeleitet, aus denen strikte, optimale, a posteriori Fehler- und Residuenschranken gewonnen werden. Diese Schranken verwenden a posteriori Fehler- und Residuenkonditionszahlen. Die Konditionszahlen, Fehler- und Residuenschranken können ganz im Bereich nichtnegativer Zahlen nur mit den arithmetischen Operatoren +, x, /berechnet werden. Es wird gezeigt, daß numerische Rechnungen dieser Art sehr stabil sind. Die allgemeinen Ergebnisse werden auf numerische Beispiele angewandt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Olver, F. W. J., Wilkinson, J. H.: A posteriori error bounds for Gaussian elimination. IMA J. Numer. Analysis2, 377–406 (1982).

    Google Scholar 

  2. Stummel, F.: Perturbation theory for evaluation algorithms of arithmetic expressions. Math. Comp.37, No. 156, 435–473 (1981).

    Google Scholar 

  3. Stummel, F.: Optimal error estimates for Gaussian elimination in floating-point arithmetic. Z. Angew. Math. Mech.62, No. 3/4, T355-T357 (1982).

    Google Scholar 

  4. Stummel, F.: Forward error analysis of the solutions of triangular linear systems and linear recurrences. Preprint, U Frankfurt, 1981.

  5. Stummel, F.: Forward error analysis of Gaussian elimination. Part I: Error and residual estimates. Numer. Math.46, 365–395 (1985).

    Google Scholar 

  6. Stummel, F.: Strict optimal error estimates for Gaussian elimination. Z. Angew. Math. u. Mech.65, No. 5, T405-T407 (1985).

    Google Scholar 

  7. Stummel, F.: FORTRAN-programs for the rounding error analysis of Gaussian elimination. Centre for Mathematical Analysis, The Australian National University, Canberra, Research Report CMA-R02-85.

  8. Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Englewood Cliffs: Prentice-Hall 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stummel, F. Strict optimal a posteriori error and residual bounds for Gaussian elimination in floating-point arithmetic. Computing 37, 103–124 (1986). https://doi.org/10.1007/BF02253185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253185

AMS-MOS Subject Classifications

Key words