Abstract
In this paper we consider explicit monotone iterations of the finite element solutions for the radiation cooling problem with the nonlinear boundary conditions. These iterations provide upper and lower bounds, and convergence proofs are given. Finally, we give some numerical examples to demonstrate the effectiveness.
Zusammenfassung
In dieser Arbeit beobachten wir das explizite monotone Iterationsverfahren von finiten Elementlösungen für das Radiationskühlungsproblem mit nichtlinearen Randbedingungen. Bei diesem Iterationsverfahren ergeben sich obere und untere Schranken, und eine Konvergenz kann nachgewiesen werden. An einigen numerischen Beispielen wird die Brauchbarkeit gezeigt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ciarlet, P. G.: Discrete maximum principle for finite-difference operators. Aequationes Math.4, 338–352 (1970).
Ciarlet, P. G., Raviart, P. A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg.2, 17–31 (1973).
Cohen, D. S.: Generalized radiation cooling of a convex solid. J. Math. Anal. Appl.35, 503–511 (1971).
Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press 1966.
Ishihara, K.: On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations. Numer. Funct. Anal. Optim.3, 105–136 (1981).
Ishihara, K.: Finite element approximations applied to the nonlinear boundary value problem Δu=bu 2. Publ. Res. Inst. Math. Sci.18, 17–34 (1982).
Ishihara, K.: Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem. Numer. Math.43, 419–437 (1984).
Ishihara, K.: Explicit iterations with monotonicity for finite element approximations applied to a system of nonlinear elliptic equations. J. Approx. Theory44, 241–252 (1985).
Ishihara, K.: Finite element solutions for radiation cooling problems with nonlinear boundary conditions. RAIRO Modélisation Mathématique et Analyse Numérique (to appear).
Olmstead, W. E.: Temperature distribution in a convex solid with nonlinear radiation boundary condition. J. Math. Mech.15, 899–908 (1966).
Ortega, J. M.: Numerical Analysis, A Second Course. New York: Academic Press, 1972.
Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ishihara, K. Explicit monotone iterations providing upper and lower bounds for finite element solution with nonlinear radiation boundary conditions. Computing 37, 137–149 (1986). https://doi.org/10.1007/BF02253187
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253187