Skip to main content

Advertisement

Log in

Adaptive Nyström-Runge-Kutta-Methoden für gewöhnliche Differentialgleichungssysteme zweiter Ordnung

Adaptive Nyström-Runge-Kutta-Methods for systems of second-order ordinary differential equations

  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Für Differentialgleichungen zweiter Ordnung ohne erste Ableitungen wird eine Klasse verallgemeinerter Nyström-Verfahren hergeleitet. Diese Verfahren beruhen auf einer lokalen Linearisierung des Differentialgleichungssystems. Die linear impliziten Verfahren haben bei geeigneter Wahl der Stabilitätsmatrix ein unendliches Stabilitätsintervall. Sie eignen sich für die Integration von großen Systemen gewöhnlicher Differentialgleichungen, die durch Semi-Diskretisierung aus hyperbolischen Differentialgleichungen zweiter Ordnung entstehen.

Abstract

A class of generalized Nyström-methods is derived for second order differential equations without first derivatives. These methods are based on local linearization of the system of differential equations. An infinite interval of stability for linear implicit methods is achieved by appropriate choice of the stability matrix. The linear implicit methods are suitable for the integration of large systems of ordinary differential equations resulting from the semi-discretization of hyperbolic differential equations of second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Dahlquist, G.: On accuracy and unconditional stability of linear multistep methods for second order differential equations. BIT18, 133–136 (1979).

    Google Scholar 

  2. Dekker, K., Van der Houwen, P. J., Verwer, J., Wolkenfelt, P. H. M.: Comparing stabilized Runge-Kutta-methods for semidiscretized parabolic and hyperbolic equations. Report NW45, Mathematisch Centrum, Amsterdam 1977.

    Google Scholar 

  3. Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. Math.32, 373–379 (1979).

    Google Scholar 

  4. Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math.25, 383–400 (1976).

    Google Scholar 

  5. Hairer, E.: Constructive characterization ofA-stable approximations to exp (z) and its connection with algebraically stable Runge-Kutta methods. Numer. Math.39, 247–258 (1982).

    Google Scholar 

  6. Houwen, van der, P. J.: Stabilized Runge-Kutta methods for second order differential equations without first derivatives. SIAM J. Numerical Analysis16, No. 3, 523–537 (1979).

    Google Scholar 

  7. Houwen, van der, P. J.: Modified Nyström methods for semidiscrete hyperbolic differential equations. Report NW 78, Mathematisch Centrum, Amsterdam 1980.

    Google Scholar 

  8. Kramarz, L.: Stability of collocation methods for the numerical solution ofy″=f(x,y). BIT20, 215–222 (1980).

    Google Scholar 

  9. Nørsett, S. P.:C-polynomials for rational approximation to the exponential function. Numer. Math.25, 39–56 (1975).

    Google Scholar 

  10. Strehmel, K.: Stabilitätseigenschaften adaptiver Runge-Kutta-Verfahren. ZAMM61, 253–260 (1981).

    Google Scholar 

  11. Strehmel, K., Weiner, R.: Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden. Computing (im Druck).

  12. Wanner, G., Hairer, E., Nørsett, S. P.: Order stars and stability theorems. BIT18, 475–489 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strehmel, K., Weiner, R. Adaptive Nyström-Runge-Kutta-Methoden für gewöhnliche Differentialgleichungssysteme zweiter Ordnung. Computing 30, 35–47 (1983). https://doi.org/10.1007/BF02253294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253294