Zusammenfassung
Für Differentialgleichungen zweiter Ordnung ohne erste Ableitungen wird eine Klasse verallgemeinerter Nyström-Verfahren hergeleitet. Diese Verfahren beruhen auf einer lokalen Linearisierung des Differentialgleichungssystems. Die linear impliziten Verfahren haben bei geeigneter Wahl der Stabilitätsmatrix ein unendliches Stabilitätsintervall. Sie eignen sich für die Integration von großen Systemen gewöhnlicher Differentialgleichungen, die durch Semi-Diskretisierung aus hyperbolischen Differentialgleichungen zweiter Ordnung entstehen.
Abstract
A class of generalized Nyström-methods is derived for second order differential equations without first derivatives. These methods are based on local linearization of the system of differential equations. An infinite interval of stability for linear implicit methods is achieved by appropriate choice of the stability matrix. The linear implicit methods are suitable for the integration of large systems of ordinary differential equations resulting from the semi-discretization of hyperbolic differential equations of second order.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Dahlquist, G.: On accuracy and unconditional stability of linear multistep methods for second order differential equations. BIT18, 133–136 (1979).
Dekker, K., Van der Houwen, P. J., Verwer, J., Wolkenfelt, P. H. M.: Comparing stabilized Runge-Kutta-methods for semidiscretized parabolic and hyperbolic equations. Report NW45, Mathematisch Centrum, Amsterdam 1977.
Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. Math.32, 373–379 (1979).
Hairer, E., Wanner, G.: A theory for Nyström methods. Numer. Math.25, 383–400 (1976).
Hairer, E.: Constructive characterization ofA-stable approximations to exp (z) and its connection with algebraically stable Runge-Kutta methods. Numer. Math.39, 247–258 (1982).
Houwen, van der, P. J.: Stabilized Runge-Kutta methods for second order differential equations without first derivatives. SIAM J. Numerical Analysis16, No. 3, 523–537 (1979).
Houwen, van der, P. J.: Modified Nyström methods for semidiscrete hyperbolic differential equations. Report NW 78, Mathematisch Centrum, Amsterdam 1980.
Kramarz, L.: Stability of collocation methods for the numerical solution ofy″=f(x,y). BIT20, 215–222 (1980).
Nørsett, S. P.:C-polynomials for rational approximation to the exponential function. Numer. Math.25, 39–56 (1975).
Strehmel, K.: Stabilitätseigenschaften adaptiver Runge-Kutta-Verfahren. ZAMM61, 253–260 (1981).
Strehmel, K., Weiner, R.: Behandlung steifer Anfangswertprobleme gewöhnlicher Differentialgleichungen mit adaptiven Runge-Kutta-Methoden. Computing (im Druck).
Wanner, G., Hairer, E., Nørsett, S. P.: Order stars and stability theorems. BIT18, 475–489 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Strehmel, K., Weiner, R. Adaptive Nyström-Runge-Kutta-Methoden für gewöhnliche Differentialgleichungssysteme zweiter Ordnung. Computing 30, 35–47 (1983). https://doi.org/10.1007/BF02253294
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253294