Skip to main content
Log in

The approximate Dirichlet Domain Decomposition method. Part I: An algebraic approach

Die näherungsweise Dirichletsche Gebietsdekompositionsmethode. Teil I: Ein algebraischer Zugang

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a new approach to the construction of Domain Decomposition (DD) preconditioners for the conjugate gradient method applied to the solution of symmetric and positive definite finite element equations. The DD technique is based on a non-overlapping decomposition of the domain Ω intop subdomains connected later with thep processors of a MIMD computer. The DD preconditioner derived contains three block matrices which must be specified for the specific problem considered. One of the matrices is used for the transformation of the nodal finite element basis into the approximate discrete harmonic basis. The other two matrices are block preconditioners for the Dirichlet problems arising on the subdomains and for a modified Schur complement defined over all nodes on the coupling boundaries between the subdomains. The relative spectral condition number is estimated. Relations to the additive Schwarz method are discussed. In the second part of this paper, we will apply the results of this paper to two-dimensional, symmetric, second-order, elliptic boundary value problems and present numerical results performed on a transputer-network.

Zusammenfassung

In der vorliegenden Arbeit wird ein neuer Zugang zur Konstruktion von Vorkonditionierungsoperatoren auf der Basis von Gebietsdekompositionstechniken (DD Techniken) beschrieben. Anwendungen finden diese DD Vorkonditionierungen im Verfahren der konjugierten Gradienten zur iterativen Lösung von symmetrischen und positiv definiten Finiten-Elemente Gleichungen. Die DD Technik basiert auf einer Zerlegung des Gebietes Ω inp sich nicht überlappende Teilgebiete, die später denp Prozessoren eines MIMD Rechners zugeordnet sind. Die DD Vorkonditionierung enthält drei Blockmatrizen, die für ein konkretes Anwendungsproblem jeweils zu spezifizieren sind. Eine dieser Matrizen wird genutzt, um die Knotenbasis in eine näherungsweise diskret harmonische Basis zu transformieren. Die anderen beiden Matrizen können als Blockvorkonditionierungen für die in jedem Teilgebiet entstehenden Dirichlet-Probleme und für ein modifiziertes Schurkomplement auf den Knoten der Koppelränder zwischen den Teilgebieten interpretiert werden. Die relative spektrale Konditionszahl wird abgeschätzt. Eine direkte Verbindung der vorgeschlagenen DD Vorkonditionierung zu einer Additiven Schwarzschen Methode kann gezeigt werden. Im zweiten Teil dieser Artikelserie werden die Resultate dieser Arbeit auf ebene, symmetrische Randwertprobleme für partielle Differentialgleichungen zweiter Ordnung angewandt und die numerischen Resultate, die auf einem Transputer-Hypercube erzeugt wurden, diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agapov, V. K., Kuznetsov, Yu. A. On some versions of the domain decomposition method. Sov. J. Numer. Anal. Math. Modelling,3, 245–265 (1988).

    Google Scholar 

  2. Axelsson, O.: On multigrid methods of the two-level type. In W. Hackbusch, U. Trottenberg (eds.), “Multigrid Methods”, Lecture Notes in Mathematics 961, pp. 352–367, Berlin: Springer 1982.

    Google Scholar 

  3. Bjørstad, P. E., Widlund, O. B.: Solving elliptic problems on regions partitioned into substructures. In G. Birkhoff, A. Schoenstadt, (eds.), “Elliptic Problem Solvers II,” Academic Press, New York, 1984, pp. 245–256.

    Google Scholar 

  4. Börgers, C.: The Neumann-Dirichlet domain decomposition method with inexact solvers on the subdomains. Numer. Math.,55, 123–136 (1989).

    Article  Google Scholar 

  5. Bramble, J. H., Pasciak, J. E., Schatz, A. H.: The construction of preconditioners for elliptic problems by substructuring I–IV. Math. Comput. I:47, 103–134 (1986), II:49, 1–16 (1987), III:51, 415–430 (1988), IV:53, 1–24 (1989).

    Google Scholar 

  6. Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. B. (eds.): Domain decomposition methods for PDE's. Proceedings of the 2nd Internationel Symposium on Domain Decomposition Methods, SIAM, Philadelphia 1989.

  7. Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. B. (eds.): Domain decomposition methods for PDE's. Proceedings of the 3rd Internationel Symposium on Domain Decomposition Methods, SIAM, Philadelphia 1990.

  8. Dietel, C.: A fast iterative method for solving stationary heat conduction problems on regions partitioned into rectangles. Numer. Math.,51, 415–428 (1987).

    Article  Google Scholar 

  9. Dryja, M.: A capacitance matrix method for Dirichlet problems on polygon regions. Numer. Math.,39, 51–64 (1982).

    Article  Google Scholar 

  10. Dryja, M.: A finite element-capacitance method for elliptic problems on regions partioned into subregions. Numer. Math.,44, 153–168 (1984).

    Article  Google Scholar 

  11. Dryja, M., Widlund, O. E.: Towards a unified theory of domain decomposition algorithms for elliptic problems. In [7], Chan, T. F. Glowinski, R., Periaux, J., Widlund, O. B. (eds.): Domain decomposition methods for PDE's. Proceedings of the 3rd Internationel Symposium on Domain Decomposition Methods, SIAM, Philadelphia 1990. pp. 3–21.

  12. Glowinski, R., Golub, G. H., Meurant, G. A., Périaux, J.: (eds.): Domain decomposition methods for PDE's. Proceedings of the 1st Internationel Symposium on Domain Decomposition Methods, SIAM, Philadelphia 1988.

  13. Haase, G., Langer, U.: On the use of multigrid preconditioners in the domain decomposition method. In [17], pp. 101–110.

    Google Scholar 

  14. Haase, G., Langer, U., Meyer A.: Domain decomposition preconditioners with inexact subdomain solvers (appears in the Journal of Numerical Linear Algebra with Applications).

  15. Haase, G., Langer, U., Meyer A.: A new approach to the Dirichlet domain decomposition method. Technical Report, Report Series R-MATH-09/90 of the Institute of Mathematics of the Academy of Science, Berlin, 59 pp.

  16. Haase, G., Langer U., Meyer, A.: The approximate Dirichlet domain decomposition method. Part II: Applications to 2nd order elliptic b. v. p. Computing,46, 153–167 (1991).

    Google Scholar 

  17. Hackbusch, W. (ed.): Parallele Algorithms for PDEs. Proceedings of the “6th GAMM Seminar”, Kiel,January 19–21. Braunschweig, Wiesbaden: Vieweg 1990.

    Google Scholar 

  18. Keyes, D. E., Gropp, W. D.: A comparision of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. SIAM J. Sci. Stat. Comput.,8, 166–202 (1987).

    Article  Google Scholar 

  19. Kuznetsov, Yu. A.: Multigrid domain decomposition methods. In Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. B. (eds.): Domain decomposition methods for PDE's. Proceedings of the 3rd Internationel Symposium on Domain Decomposition Methods, SIAM, Philadelphia 1990. pp. 290–313.

  20. Meyer, A.: A parallel preconditioned conjugate gradient method using domain decomposition and inexact solvers on each subdomain. Computing,45, 217–234 (1990).

    Article  Google Scholar 

  21. Przemieniecki, J. S.: Matrix structural analysis of substructures. AIAA J.,1, 138–147 (1963).

    Google Scholar 

  22. Samarski, A. A., Nikolaev, E. S.: Numerical methods for grid equations, Vol. II: Iterative methods. Basel, Boston, Berlin: Birkhauser 1989.

    Google Scholar 

  23. Schwarz, H. A.: Über einige Abbildungsaufgaben. Ges. Math. Abh.,11, 65–83 (1869).

    Google Scholar 

  24. Widlund, O. B.: Iterative substructuring methods: The general elliptic case. Technical Report 260. Computer Science Department, Courant Institute, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haase, G., Langer, U. & Meyer, A. The approximate Dirichlet Domain Decomposition method. Part I: An algebraic approach. Computing 47, 137–151 (1991). https://doi.org/10.1007/BF02253431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253431

AMS Subject Classifications

Key words

Navigation