Abstract
A local scheme for piecewiseC 1-Hermite interpolation is presented. The interpolant is obtained patching together cubic with quadratic polynomial segments; it is co-monotone and/or co-convex with the data. Under appropriate assumptions the method is fourth-order accurate.
Zusammenfassung
Ein lokaler Ansatz zur stückweisenC 1-Hermite-Interpolation wird vorgestellt. Die Interpolierende besteht aus zusammengesetzten kubischen und quadratischen Segmenten; sie erhält die Monotonie und/oder die Konvexität der Daten. Unter geeigneten Voraussetzungen approximier sie von vierter Ordnung.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Conti, C., Morandi, R.: A short note on admissible slopes forC 1 piecewise convex interpolation. Rapp. Int. Dip. Energetica (1994).
Costantini P.: An algorithm for computing shape-preserving interpolating splines of arbitrary degree. J. Comput. Appl Math.22, 89–136 (1988).
Edelman A., Micchelli C. A.: Admissible slopes for monotone and convex interpolation. Numer. Math.51, 441–458 (1987).
Gasparo M. G., Morandi R.: Piecewise cubic monotone interpolation with assigned slopes. Computing46, 355–365 (1991).
Gregory G. A., Delbourgo R.: Piecewise rational quadratic interpolation to montonic data. I.M.A.J. Numer. Anal.2, 123–130 (1982).
Manni C.: Parametric comonotone hermite interpolation. Preprint (1994).
Yan Z.: Piecewise cubic curve fitting algorithm. Math. Comp.49, 203–213 (1987).
Zhang Z., Yang Z., Zhang C.: Monotone piecewise curve fitting algorithms. J. Comp. Math.12, 165–174 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Conti, C., Morandi, R. PiecewiseC 1-shape-preserving Hermite interpolation. Computing 56, 323–341 (1996). https://doi.org/10.1007/BF02253459
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02253459