Skip to main content
Log in

Thel p -solution of the linear matrix equationAX+YB=C

Diel p -Lösung der linearen MatrizengleichungAX+YB=C

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we consider the linear matrix equationAX+YB=C. We present a characterization of thel p -solution and an algorithm which utilizes a special form of this equation. Some numerical examples are given.

Zusammenfassung

In diesem Beitrag wird die lineare MatrizengleichungAX+YB=C betrachtet. Angegeben werden eine Charakterisierung derl p -Lösung und ein Algorithmus, welcher eine spezielle Form der Gleichung ausnützt. Numerische Beispiele werden angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baksalary, J. K., Kala, R.: The matrix equationAX−YB=C. Lin. Alg. and Its Appl.25, 41–44 (1979).

    Google Scholar 

  2. Daugavet, V. A.: Ob odnom variante stupenčatogo stepennogo metoda dlja otyskanija neskol'kyh pervyh sobstvennyh značenij simmetričnoj matricy. Ž. Vyč. i Mat. Fiz.8, 158–165 (1968).

    Google Scholar 

  3. Ekblom, H.: Calculation of linear bestl p -approximations. BIT13, 292–300 (1973).

    Google Scholar 

  4. Fischer, J.: An algorithm for discrete linearl p approximation. Numer. Math.38, 129–139 (1981).

    Google Scholar 

  5. Fletcher, R., Grant, J. A., Hebden, M. D.: The calculation of linear bestl p approximations. Computer J.14, 276–279 (1971).

    Google Scholar 

  6. Golub, G. H., Pereyra, V.: Differentiation of pseudoinverses, separable nonlinear least square problems and other tabes. In: Generalized inverses and applications (Nashed, Z., ed.), pp. 303–324. New York: Academic Press 1976.

    Google Scholar 

  7. Kahng, S. W.: Bestl p approximation, Math. Comp.26, 505–508 (1972).

    Google Scholar 

  8. Merle, G., Späth, H.: Computational experiences with discretel p -approximation. Computing12, 315–321 (1974).

    Google Scholar 

  9. Radakrishna Rao, C.: Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In: Multivariate Analysis V (Krishnaiah, P. R., ed.), pp. 3–22. Amsterdam: North-Holland 1980.

    Google Scholar 

  10. Roth, W. E.: The equationsAX−YB=C andAX−XB=C in matrices. Proc. Amer. Math. Soc.3, 392–396 (1952).

    Google Scholar 

  11. Späth, H.: Algorithmen für multivariable Ausgleichsmodelle. München: Oldenburg 1974.

    Google Scholar 

  12. Watson, G. A.: On two methods for discretel p -approximation. Computing18, 263–266 (1977).

    Google Scholar 

  13. Watson, G. A.: Approximation theory and numerical methods. London: Wiley 1980.

    Google Scholar 

  14. Wilkinson, J. H., Reinsch, C.: Handbook for automatic computation. Linear Algebra. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  15. Wolfe, J. M.: On the convergence of an algorithm for discretel p approximation. Numer. Math.32, 439–459 (1979).

    Google Scholar 

  16. Ziętak, K.: Thel p -solution of the nonlinear matrix equationXY=A. BIT23, 248–257 (1983).

    Google Scholar 

  17. Ziętak, K.: The Chebyshev solution of the linear matrix equationAX+YB=C. Report Nr. N-121, Institute of Computer Science, University of Wrocław, 1983 (submitted to Numer. Math.).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziętak, K. Thel p -solution of the linear matrix equationAX+YB=C . Computing 32, 153–162 (1984). https://doi.org/10.1007/BF02253689

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253689

Key words

AMS Subject Classifications

CR categories

Navigation