Skip to main content
Log in

Interval orders without odd crowns are defect optimal

Intervallordnungen ohne ungerade Kronen sind defektoptimal

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The defect of a (partial) order relationP is defined to be the rank of the kernel of the associated incidence matrix. Gierz and Poguntke [7] have shown that the defect provides a lower bound for the number of incomparable adjacent pairs in an arbitrary topological sorting ofP. We show that this bound is sharp for interval orders without odd crowns. Furthermore, an efficient algorithm for topological sortings of such orders is presented which achieves the bound. We finally exhibit a natural matroid structure associated with the optimal topological sortings under consideration, which permits to solve the weighted case.

Zusammenfassung

Der Defekt einer HalbordnungP ist definiert als der Korang der zugehörigen Inzidenzmatrix. Gierz und Poguntke [7] haben den Defekt als eine untere Schranke für die Anzahl von Paaren unvergleichbarer Elemente, die in einer gegebenen linearen Erweiterung benachbart auftreten können, nachgewiesen. Wir zeigen, daß für Intervallordnungen ohne ungerade Kronen die Schranke exakt ist, und wir geben einen effizienten Algorithmus zur Konstruktion linearer Erweiterungen an, die in diesem Fall die Schranke erreichen. Wir weisen weiter nach, daß die Menge der optimalen linearen Erweiterungen einer solchen Ordung in natürlicher Weise eine Matroidstruktur induziert, die sich zur Lösung des gewichteten Problems verwenden läßt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cogis, O., Habib, M.: Nombre de sauts et graphes séries parallèles. R.A.I.R.O. Inform. Théor.13, 3–18 (1979).

    Google Scholar 

  2. Duffus, D., Rival, I., Winkler, P.: Minimizing setups for cycle-free ordered sets. Proc. Am. Math. Soc.85, 509–513 (1985).

    Google Scholar 

  3. Faigle, U., Gierz, G., Schrader, R.: Algorithmic approaches to setup minimization. SIAM Journ. Computing14, 954–965 (1985).

    Article  Google Scholar 

  4. Faigle, U., Schrader, R.: A setup heuristic for interval orders. Operations Res. Letters4, 185–188 (1985).

    Article  Google Scholar 

  5. Faigle, U., Schrader, R.: Minimizing completion time for a class of scheduling problems. Inform. Proc. Letters19, 27–29 (1984).

    Article  Google Scholar 

  6. Faigle, U., Schrader, R.: Setup minimization techniques for comparability graphs. In: Graphtheoretic Concepts in Computer Science (Noltemeier, H., ed.), pp. 101–117. Linz: Trauner Verlag 1985.

    Google Scholar 

  7. Gierz, G., Poguntke, W.: Minimizing setups for ordered sets: a linear algebraic approach. SIAM Journ. Algebr. Discr. Methods 132–144 (1983).

  8. Golumbic, M. C.: Algorithmic Graph Theory and Perfect Graphs. New York: Academic Press 1980.

    Google Scholar 

  9. Lawler, E. L.: Combinatorial Optimization: Networks and Matroids. New York: Holt, Rinehart and Winston 1976.

    Google Scholar 

  10. Rival, I.: Optimal linear extension by interchanging chains. Proc. Amer. Math. Soc.89, 387–394 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Sonderforschungsbereich 303 (DFG), Institut für Operations Research, Universität Bonn, Federal Republic of Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faigle, U., Schrader, R. Interval orders without odd crowns are defect optimal. Computing 38, 59–69 (1987). https://doi.org/10.1007/BF02253744

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253744

Keywords