Abstract
In this paper we develop direct and iterative algorithms for the solution of finite difference approximations of the Poisson and Biharmonic equations on a square, using a number of arithmetic units in parallel. Assuming ann×n grid of mesh points, we show that direct algorithms for the Poisson and Biharmonic equations require 0(logn) and 0(n) time steps, respectively. The corresponding speedup over the sequential algorithms are 0(n 2) and 0(n 2logn). We also compare the efficiency of these direct algorithms with parallel SOR and ADI algorithms for the Poisson equation, and a parallel semi-direct method for the Biharmonic equation treated as a coupled pair of Poisson equations.
Zusammenfassung
In diesem Artikel entwickeln wir direkte und iterative Algorithmen für die Lösung von Differenzen-Approximationen der Poisson und Biharmonischen Gleichungen über einem Quadrat, wobei eine Anzahl paralleler Arithmetikeinheiten verwendet wird. Unter der Annahme eines [n, n] Netzes zeigen wir, daß direkte Algorithmen für die Poisson bzw. Biharmonischen Gleichungen 0(logn) bzw. 0(n) Schritte benötigen. Der entsprechende Gewinn über die sequentiellen Algorithmen beträgt 0(n 2) bzw. 0(n 2logn). Wir vergleichen außerdem die Effizienz dieser direkten Algorithmen mit parallelen SOR und ADI Algorithmen für die Poisson Gleichung, und mit einer parallelen halb-direkten Methode für die Behandlung der Biharmonischen Gleichung als eines gekoppelten Paares von Poisson Gleichungen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dorr, F. W.: The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev.12, 248–263 (1970).
Buzbee, B. L.: A fast Poisson solver amenable to parallel computation. IEEE Trans. Comput.C-22, 793–796 (1973).
Buzbee, B. L., Golub, G. H., Neilson, C. W.: On direct methods for solving Poisson's equation. SIAM J. Num. Analys.7, 627–656 (1970).
Ehrlich, L. W.: Solving the biharmonic equation in a square: A direct versus a semidirect method. Comm. ACM16, 711–714 (1973).
Golub, G. H.: An algorithm for the discrete biharmonic equation. Private communication.
Buzbee, B. L., Dorr, F. W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Num. Analys.11, 753–762 (1974).
Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1962.
Brigham, E. O., Morrow, R. E.: The fast Fourier transform. IEEE Spectrum (Dec. 1967), 63–70.
Pease, M. C.: An adaptation of the fast Fourier transform for parallel processing. J. ACM15, 252–264 (1968).
Ackins, G. M., Kuck, D. J.: Seismic signal processing via the ILLIAC IV computer. IEEE Trans. Geo. Electron.GE-7, 34–41 (1969).
Cooley, J. W., Lewis, P. A., Welch, P. D.: The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine, and Laplace transforms. J. Sound Vib.12, 315–337 (1970).
Chen, S. C., Kuck, D. J.: Time and parallel processor bounds for linear recurrence systems. IEEE Trans. Comput.C-24, 701–717 (1975).
Householder, A. S.: The Theory of Matrices in Numerical Analysis. Blaisdell 1965.
Fisher, D., Golub, G., Hald, O., Leiva, C., Widlund, O.: On Fourier-Toeplitz methods for separable elliptic problems. Math. Comp.28, 349–368 (1974).
Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. J. ACM8, 281–330 (1961).
Sameh, A., Chen, S., Kuck, D.: Parallel direct Poisson and biharmonic solvers. Department of Computer Science, Report No. 684, University of Illinois, 1974.
Sameh, A., Kuck, D.: Linear system solvers for parallel computers. Department of Computer Science, Report No. 701, University of Illinois, 1975.
Ehrlich, L. W.: Solving the biharmonic equation as coupled finite difference equations. SIAM J. Num. Analys.8, 278–287 (1971).
Kuck, D. J.: On the speedup and cost of parallel computation. Proceedings on the Complexity of Computational Problem Solving, The Australian National University, Dec. 1974.
Author information
Authors and Affiliations
Additional information
This work was supported in part by NSF Grant DCR 73-07980 A02; and in part by the Advanced Research Project Agency of the Department of Defense under Contract No. DAHC04-72-C-0001.
Rights and permissions
About this article
Cite this article
Sameh, A.H., Chen, S.C. & Kuck, D.J. Parallel Poisson and Biharmonic solvers. Computing 17, 219–230 (1976). https://doi.org/10.1007/BF02259647
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02259647