Abstract
A numerical quadrature algorithm is developed, for integrands which may exhibit some kind of singular behaviour within the finite of infinite integration range.
Using the automatical FORTRAN IV integration program, one should provide the abscissae the function is not “smooth” at.
The quadrature formula has been obtained by applying the trapezoidal rule after transformation of the integrand.
Standing severe tests which were based on the test functions of Casaletto et al. and on Kahaner's sample set, the integration scheme turned out to be of a remarkable reliability, efficiency and accuracy.
Zusammenfassung
Es wird ein Algorithmus zur numerischen Quadratur beschrieben, der für Integranden mit singulärem Verhalten in einem endlichen oder unendlichen Integrationsbereich geeignet ist.
Die Quadraturformel wurde durch Transformation des Integranden und anschließende Anwendung der Trapezregel erhalten.
Es wird ein FORTRAN IV Programm vorgestellt, das auf der Anwendung dieser Quadraturformel beruht. Beim Aufruf dieses Programms sollte der Benutzer jene Abszissenwerte vorgeben, an denen der Integrand Singularitäten aufweist.
Unter Verwendung der Testfunktionen von Casaletto et al. und von Kahaner konnte die Zuverlässigkeit, Effizienz und Genauigkeit dieses Integrationsprogramms nachgewiesen werden.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Casaletto, J., Pickett, M., Rice, J.: A Comparison of some Numerical Integration Programs. Signum Newsletter4, 30 (1969).
Davis, P. J., Rabinowitz, P.: Numerical Integration, Waltham. Massachusetts-Toronto-London: Blaisdell 1967.
de Boor, C.: On Writing an Automatic Integration Algorithm. Mathematical Software (Rice, J. R., ed.), p. 201. London-New York: Academic Press 1971.
de Boor, C.: Cadre: An Algorithm for Numerical Quadrature. Mathematical Software (Rice, J. R., ed.), p. 417. London-New York: Academic Press 1971.
Dixon, V. A.: Numerical Quadrature. A Survey of the Available Algorithms. Software for Numerical Mathematics (Evans, D. J., ed.), p. 105. London-New York: Academic Press 1974.
Dixon, V. A.: (in) Discussion, Software for Numerical Mathematics (Evans, D. J., ed.), p. 173. London-New York: Academic Press 1974.
De Doncker, E., Piessens, R.: Automatic Computation of Integrals with Singular Integrand over a Finite or an Infinite Range, Report TW22. Appl. Math. and Progr. Div.—Leuven, K. U., 1975.
Einarsson, B.: Testing and Evaluation of Some Subroutines for Numerical Quadrature. Software for Numerical Mathematics (Evans, D. J., ed.), p. 149. London-New York: Academic Press 1974.
Gentleman, W. M.: Implementing Clenshaw-Curtis Quadrature, I Methodology and Experience. Comm. ACM15, 337 (1972).
Iri, M., Moriguti, S., Takasawa, Y.: On a Numerical Integration Formula (in Japanese). Kokyuroku of Research Institute for Mathematical Sciences, Kyoto University, no 91, 82 (1970).
Kahaner, D. K.: Comparison of Numerical Quadrature Formulas. Mathematical Software (Rice, J., ed.), p. 229. London-New York: Academic Press 1971.
Lyness, J. N.: Guidelines for Automatic Quadrature Routines. Information Processing71, 1351 (1972).
Piessens, R.: An Algorithm for Automatic Integration. Angewandte Informatik9, 399 (1973).
Sag, T. W., Szekeres, G.: Numerical Evaluation of High-Dimensional Integrals. Math. Comp.18, 245 (1964).
Schwartz, C.: Numerical Integration of Analytic Functions. J. Comput. Phys.4, 19 (1969).
Stetter, H. J., Überhuber, C. W.: Population Studies in Numerical Quadrature (short communication). Report no 6/75, Institut für Numerische Mathematik, Technical University of Vienna.
Takahasi, H., Mori, M.: Error Estimation in the Numerical Integration of Analytic Functions. Report of the Computer Centre, University of Tokyo3, 41 (1970).
Takahasi, H., Mori, M.: Double Exponential Formulae for Numerical Integration. Publications of the Research Institute for Mathematical Sciences, Kyoto University9, no 3 (1974).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
De Doncker, E., Piessens, R. Algorithm 32 automatic computation of integrals with singular integrand, over a finite or an infinite range. Computing 17, 265–279 (1976). https://doi.org/10.1007/BF02259651
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02259651