Skip to main content
Log in

Algorithm 32 automatic computation of integrals with singular integrand, over a finite or an infinite range

Algorithmus 31. Automatische Integration von singulären Integranden über ein endliches oder ein unendliches Intervall

  • Algorithm
  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A numerical quadrature algorithm is developed, for integrands which may exhibit some kind of singular behaviour within the finite of infinite integration range.

Using the automatical FORTRAN IV integration program, one should provide the abscissae the function is not “smooth” at.

The quadrature formula has been obtained by applying the trapezoidal rule after transformation of the integrand.

Standing severe tests which were based on the test functions of Casaletto et al. and on Kahaner's sample set, the integration scheme turned out to be of a remarkable reliability, efficiency and accuracy.

Zusammenfassung

Es wird ein Algorithmus zur numerischen Quadratur beschrieben, der für Integranden mit singulärem Verhalten in einem endlichen oder unendlichen Integrationsbereich geeignet ist.

Die Quadraturformel wurde durch Transformation des Integranden und anschließende Anwendung der Trapezregel erhalten.

Es wird ein FORTRAN IV Programm vorgestellt, das auf der Anwendung dieser Quadraturformel beruht. Beim Aufruf dieses Programms sollte der Benutzer jene Abszissenwerte vorgeben, an denen der Integrand Singularitäten aufweist.

Unter Verwendung der Testfunktionen von Casaletto et al. und von Kahaner konnte die Zuverlässigkeit, Effizienz und Genauigkeit dieses Integrationsprogramms nachgewiesen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Casaletto, J., Pickett, M., Rice, J.: A Comparison of some Numerical Integration Programs. Signum Newsletter4, 30 (1969).

    Google Scholar 

  2. Davis, P. J., Rabinowitz, P.: Numerical Integration, Waltham. Massachusetts-Toronto-London: Blaisdell 1967.

    Google Scholar 

  3. de Boor, C.: On Writing an Automatic Integration Algorithm. Mathematical Software (Rice, J. R., ed.), p. 201. London-New York: Academic Press 1971.

    Google Scholar 

  4. de Boor, C.: Cadre: An Algorithm for Numerical Quadrature. Mathematical Software (Rice, J. R., ed.), p. 417. London-New York: Academic Press 1971.

    Google Scholar 

  5. Dixon, V. A.: Numerical Quadrature. A Survey of the Available Algorithms. Software for Numerical Mathematics (Evans, D. J., ed.), p. 105. London-New York: Academic Press 1974.

    Google Scholar 

  6. Dixon, V. A.: (in) Discussion, Software for Numerical Mathematics (Evans, D. J., ed.), p. 173. London-New York: Academic Press 1974.

    Google Scholar 

  7. De Doncker, E., Piessens, R.: Automatic Computation of Integrals with Singular Integrand over a Finite or an Infinite Range, Report TW22. Appl. Math. and Progr. Div.—Leuven, K. U., 1975.

  8. Einarsson, B.: Testing and Evaluation of Some Subroutines for Numerical Quadrature. Software for Numerical Mathematics (Evans, D. J., ed.), p. 149. London-New York: Academic Press 1974.

    Google Scholar 

  9. Gentleman, W. M.: Implementing Clenshaw-Curtis Quadrature, I Methodology and Experience. Comm. ACM15, 337 (1972).

    Article  Google Scholar 

  10. Iri, M., Moriguti, S., Takasawa, Y.: On a Numerical Integration Formula (in Japanese). Kokyuroku of Research Institute for Mathematical Sciences, Kyoto University, no 91, 82 (1970).

    Google Scholar 

  11. Kahaner, D. K.: Comparison of Numerical Quadrature Formulas. Mathematical Software (Rice, J., ed.), p. 229. London-New York: Academic Press 1971.

    Google Scholar 

  12. Lyness, J. N.: Guidelines for Automatic Quadrature Routines. Information Processing71, 1351 (1972).

    Google Scholar 

  13. Piessens, R.: An Algorithm for Automatic Integration. Angewandte Informatik9, 399 (1973).

    Google Scholar 

  14. Sag, T. W., Szekeres, G.: Numerical Evaluation of High-Dimensional Integrals. Math. Comp.18, 245 (1964).

    Google Scholar 

  15. Schwartz, C.: Numerical Integration of Analytic Functions. J. Comput. Phys.4, 19 (1969).

    Article  Google Scholar 

  16. Stetter, H. J., Überhuber, C. W.: Population Studies in Numerical Quadrature (short communication). Report no 6/75, Institut für Numerische Mathematik, Technical University of Vienna.

  17. Takahasi, H., Mori, M.: Error Estimation in the Numerical Integration of Analytic Functions. Report of the Computer Centre, University of Tokyo3, 41 (1970).

    Google Scholar 

  18. Takahasi, H., Mori, M.: Double Exponential Formulae for Numerical Integration. Publications of the Research Institute for Mathematical Sciences, Kyoto University9, no 3 (1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Doncker, E., Piessens, R. Algorithm 32 automatic computation of integrals with singular integrand, over a finite or an infinite range. Computing 17, 265–279 (1976). https://doi.org/10.1007/BF02259651

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259651

Keywords