Zusammenfassung
In dieser Arbeit bestimmen wir die B-Spline-Koeffizienten und Knoten einer B-Spline-Kurve, die die gleiche Gestalt wie eine vorgegebene segmentierte Bézier-Kurve besitzt. Die Stetigkeitsordnung in verschiedenen Bézier-Segment-Übergängen kann dabei unterschiedlich sein.
Abstract
In this paper we determine the coefficients and knots of a B-spline curve, which has the same shape as a given segmented Bézier curve. The order of continuity in different joins of Bézier segments may be different.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Literatur
Barnhill, R., Riesenfeld, R.: Computer aided geometric design. (Proceedings of Utah Conference in 1974). New York: Academic Press 1974.
Bézier, P.: Numerical control, mathematics and applications. (Translated by A. R. Forrest.) London: J. Wiley 1972.
Böhm, W.: Über die Konstruktion von B-Spline-Kurven. Computing18, 161–166 (1977).
Böhm, W.: Cubic B-spline curves and surfaces in computer aided geometric design. Computing19, 29–34 (1977).
Böhm, W.: Inserting new knots into B-spline curves. Computer Aided Design12/4, 199–201 (1980).
Böhm, W.: Generating the Bézier points of B-spline curves and surfaces. Computer Aided Design13/6, 365–366 (1981).
de Boor, C.: On calculating with B-splines. J. Approx. Theory6, 50–62 (1972).
Cox, M. G.: The numerical evaluation of B-splines. J. Inst. Maths. Applics.10, 134–149 (1972).
Forrest, A. R.: Interactive interpolation and approximation by Bézier polynomials. Computer J.15, 71–79 (1972).
Gordon, W., Riesenfeld, R.: Bernstein-Bézier-methods for the computer-aided design of free-form curves and surfaces. J. ACM21, 293–310 (1974).
Gordon, W., Riesenfeld, R.: B-spline curves and surfaces. Proceedings of Utah Conference in 1974) New York: Academic Press, 95–126 (1974).
Hering, L.: Closed (C 2- andC 3-continuous) Bézier and B-spline curves with given tangent polygons. (Erscheint in: Computer Aided Design).
Sablonniére, P.: Spline and Bézier polygons associated with a polynomial spline curve. Computer Aided Design10/4, 257–261 (1978).
Stärk, E.: Mehrfach differenzierbare Bézier-Kurven und Bézier-Flächen. Dissertation, Braunschweig, 1976.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hering, L. Darstellung von Bézier-Kurven als B-Spline-Kurven. Computing 31, 149–153 (1983). https://doi.org/10.1007/BF02259910
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02259910