Abstract
Recently England introducedk-step formulas of orderk+2 which use one off-step point for the integration of stiff differential equations. These formulas are slightly modified, theorems on the error constants are given and numerical results are presented.
Zusammenfassung
k-Schritt off-step point Verfahren der Ordnungk+2 zur Integration steifer Differentialgleichungen sind von England neu eingeführt worden. Für eine leichte Verallgemeinerung dieser Verfahren werden Resultate über die Fehlerkonstanten angegeben. Darüber hinaus werden numerische Ergebnisse vorgestellt.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
England, R.: Some hybrid implicit stiffly stable methods for ordinary differential equations. In: Lecture Notes in Mathematics, Vol. 909, pp. 147–158. Berlin-Heidelberg-New York: Springer 1982.
Enright, W. H.: Second derivative multistep methods for stiff ODE. SIAM J. Numer. Anal.11, 321–331 (1974).
Enright, W. H.: Optimal second derivative methods for stiff systems. In: Stiff Differential Systems (Willoughby, R. A., ed.), pp. 95–111. Plenum Press.
Enright, W. H., Hull, T. E., Lindberg, B.: Comparing numerical methods for stiff systems of ODEs. BIT15, 10–48 (1975).
Gear, C. W.: The automatic integration of ordinary differential equations. CACM14, 176–179 (1971).
Gottwald, B. A., Wanner, G.: A reliable Rosenbrock integrator for stiff differential equations. Computing26, 355–360 (1981).
Gragg, W. B., Stetter, H. J.: Generalized multistep predictor-corrector methods. JACM11, 188–209 (1964).
Author information
Authors and Affiliations
Additional information
This work was partly supported by the Deutsche Forschungsgemeinschaft—Sonderforschungsbereich 72.
Rights and permissions
About this article
Cite this article
Lautsch, M. An implicit off-step point method for the integration of stiff differential equations. Computing 31, 177–183 (1983). https://doi.org/10.1007/BF02259913
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02259913