Skip to main content
Log in

Efficient methods for enclosing solutions of systems of nonlinear equations

Effiziente Verfahren zur Einschließung von Lösungen nichtlinearer Gleichungssysteme

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider modifications of the interval Newton method which combine two ideas: Reusing the same evaluation of the Jacobian several (says) times and approximately solving the Newton equation by some ‘linear’ iterative process. We show in particular that theR-order of these methods may becomes+1. We illustrate our results by a numerical example.

Zusammenfassung

Wir betrachten Modifikationen des Intervall-Newton-Verfahrens, welche zwei Ansätze miteinander verbinden: Mehrfache (z.B.s-fache) Verwendung derselben Auswertung der Jacobi-Matrix und näherungsweise Lösung der Newton-Gleichung mit einem „linearen” Iterationsprozeß. Insbesondere zeigen wir, daß dieR-Ordnung dieser Verfahrens+1 werden kann. Wir illustrieren unsere Ergebnisse an einem numerischen Beispiel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Alefeld, Über die Existenz einer eindeutigen Lösung bei einer Klasse nichtlinearer Gleichungssysteme und deren Berechnung mit Iterationsverfahren. Apl. Mat.,17 (1972), pp. 267–294.

    Google Scholar 

  2. G. Alefeld, Über die Durchführbarkeit des Gauß'schen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten, Computing Suppl.1 (1977), pp. 15–19.

    Google Scholar 

  3. G. Alefeld, On the convergence of some interval-arithmetic modifications of Newton's method, SIAM J. Numer. Anal.,21 (1984), pp. 363–372.

    Google Scholar 

  4. G. Alefeld and J. Herzberger Introduction to interval computations, Academic Press, New York, 1983.

    Google Scholar 

  5. G. Alefeld and F. Potra, A new class of interval methods with higher order of convergence, Computing42, 69–80 (1989).

    Google Scholar 

  6. W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing,12 (1974), pp. 117–125.

    Google Scholar 

  7. K. Fan, Topological proof of certain theorems on matrices with non-negative elements. Monatsh. Math.52 (1958), pp. 219–237.

    Google Scholar 

  8. A. Frommer and G. Mayer, Safe bounds for the solution of nonlinear problems using a parallel multisplitting method, Computing42, (1989), 171–186.

    Google Scholar 

  9. A. Frommer and G. Mayer, On theR-order of Newton-like methods for enclosing solutions of nonlinear equations, to appear in SIAM J. Numer. Anal.

  10. U. Kulisch and W. L. Miranker, Computer arithmetic in theory and practice, Academic Press, New York, 1981.

    Google Scholar 

  11. U. Kulisch and W. L. Miranker, A new approach to scientific computation, Academic Press, New York, 1983.

    Google Scholar 

  12. G. Mayer, Reguläre Zerlegungen und der Satz von Stein and Rosenberg für Intervallmatrizen, Habilitationsschrift, Karlsruhe, 1986.

  13. G. Mayer, On Newton-like methods to enclose solutions of nonlinear equations, Apl. Mat.,34 (1989), pp. 67–84.

    Google Scholar 

  14. A. Neumaier, New techniques for the analysis of linear interval equations, Linear Algebra Appl.,58 (1984), pp. 273–325.

    Google Scholar 

  15. A. Neumaier, Interval iteraction for zeros of systems of equations, BIT25 (1985), pp. 256–273.

    Google Scholar 

  16. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York 1970.

    Google Scholar 

  17. L. B. Rall, An introduction to the scientific computing language PASCAL-SC, MRC Technical Summary Report #2644, Math. Res. Center, University of Wisconsin, Madison, 1984.

    Google Scholar 

  18. H. Schwandt, Schnelle fast global konvergente Verfahren für die Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten, Dissertation, Techn. Univ. Berlin (1981).

  19. H. Schwandt, A symmetric iterative interval method for systems of nonlinear equations, Computing33 (1984), pp. 153–164.

    Google Scholar 

  20. H. Schwandt, Almost globally convergent interval methods for discretizations of nonlinear elliptic partial differential equations, SIAM J. Numer. Anal. (1986), pp. 304–324.

  21. H. Schwandt, Interval arithmetic multistep methods for nonlinear systems of equations, Japan J. Appl. Math.4 (1987), pp. 139–171.

    Google Scholar 

  22. H. Schwandt, Iterative methods for systems of equations with interval coefficients and linear form, Computing,38 (1987), pp. 143–161.

    Google Scholar 

  23. H. Schwetlick, Numerische Lösung nichtlinearer Gleichungen, Oldenbourg, München (1979).

    Google Scholar 

  24. J. M. Shearer and M. A. Wolfe, Some algorithms for the solution of a class of nonlinear algebraic equations, Computing,35 (1985), pp. 63–72.

    Google Scholar 

  25. A. H. Sherman, On Newton-iterative methods for the solution of systems of nonlinear equations, SIAM J. Numer. Anal.,15 (1978), pp. 755–771

    Google Scholar 

  26. R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  27. M. A. Wolfe, A modification of Krawczyk's algorithm, SIAM J. Numer. Anal.17, 376–379 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frommer, A., Mayer, G. Efficient methods for enclosing solutions of systems of nonlinear equations. Computing 44, 221–235 (1990). https://doi.org/10.1007/BF02262218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262218

AMS Subject Classifications (1985)

Key words