Abstract
We consider modifications of the interval Newton method which combine two ideas: Reusing the same evaluation of the Jacobian several (says) times and approximately solving the Newton equation by some ‘linear’ iterative process. We show in particular that theR-order of these methods may becomes+1. We illustrate our results by a numerical example.
Zusammenfassung
Wir betrachten Modifikationen des Intervall-Newton-Verfahrens, welche zwei Ansätze miteinander verbinden: Mehrfache (z.B.s-fache) Verwendung derselben Auswertung der Jacobi-Matrix und näherungsweise Lösung der Newton-Gleichung mit einem „linearen” Iterationsprozeß. Insbesondere zeigen wir, daß dieR-Ordnung dieser Verfahrens+1 werden kann. Wir illustrieren unsere Ergebnisse an einem numerischen Beispiel.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G. Alefeld, Über die Existenz einer eindeutigen Lösung bei einer Klasse nichtlinearer Gleichungssysteme und deren Berechnung mit Iterationsverfahren. Apl. Mat.,17 (1972), pp. 267–294.
G. Alefeld, Über die Durchführbarkeit des Gauß'schen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten, Computing Suppl.1 (1977), pp. 15–19.
G. Alefeld, On the convergence of some interval-arithmetic modifications of Newton's method, SIAM J. Numer. Anal.,21 (1984), pp. 363–372.
G. Alefeld and J. Herzberger Introduction to interval computations, Academic Press, New York, 1983.
G. Alefeld and F. Potra, A new class of interval methods with higher order of convergence, Computing42, 69–80 (1989).
W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing,12 (1974), pp. 117–125.
K. Fan, Topological proof of certain theorems on matrices with non-negative elements. Monatsh. Math.52 (1958), pp. 219–237.
A. Frommer and G. Mayer, Safe bounds for the solution of nonlinear problems using a parallel multisplitting method, Computing42, (1989), 171–186.
A. Frommer and G. Mayer, On theR-order of Newton-like methods for enclosing solutions of nonlinear equations, to appear in SIAM J. Numer. Anal.
U. Kulisch and W. L. Miranker, Computer arithmetic in theory and practice, Academic Press, New York, 1981.
U. Kulisch and W. L. Miranker, A new approach to scientific computation, Academic Press, New York, 1983.
G. Mayer, Reguläre Zerlegungen und der Satz von Stein and Rosenberg für Intervallmatrizen, Habilitationsschrift, Karlsruhe, 1986.
G. Mayer, On Newton-like methods to enclose solutions of nonlinear equations, Apl. Mat.,34 (1989), pp. 67–84.
A. Neumaier, New techniques for the analysis of linear interval equations, Linear Algebra Appl.,58 (1984), pp. 273–325.
A. Neumaier, Interval iteraction for zeros of systems of equations, BIT25 (1985), pp. 256–273.
J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York 1970.
L. B. Rall, An introduction to the scientific computing language PASCAL-SC, MRC Technical Summary Report #2644, Math. Res. Center, University of Wisconsin, Madison, 1984.
H. Schwandt, Schnelle fast global konvergente Verfahren für die Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten, Dissertation, Techn. Univ. Berlin (1981).
H. Schwandt, A symmetric iterative interval method for systems of nonlinear equations, Computing33 (1984), pp. 153–164.
H. Schwandt, Almost globally convergent interval methods for discretizations of nonlinear elliptic partial differential equations, SIAM J. Numer. Anal. (1986), pp. 304–324.
H. Schwandt, Interval arithmetic multistep methods for nonlinear systems of equations, Japan J. Appl. Math.4 (1987), pp. 139–171.
H. Schwandt, Iterative methods for systems of equations with interval coefficients and linear form, Computing,38 (1987), pp. 143–161.
H. Schwetlick, Numerische Lösung nichtlinearer Gleichungen, Oldenbourg, München (1979).
J. M. Shearer and M. A. Wolfe, Some algorithms for the solution of a class of nonlinear algebraic equations, Computing,35 (1985), pp. 63–72.
A. H. Sherman, On Newton-iterative methods for the solution of systems of nonlinear equations, SIAM J. Numer. Anal.,15 (1978), pp. 755–771
R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.
M. A. Wolfe, A modification of Krawczyk's algorithm, SIAM J. Numer. Anal.17, 376–379 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Frommer, A., Mayer, G. Efficient methods for enclosing solutions of systems of nonlinear equations. Computing 44, 221–235 (1990). https://doi.org/10.1007/BF02262218
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02262218