Abstract
Several orthogonal-invariant fixpoint theorems for the convergence of the Gauss-Newton Method are given which reduce to well-known Newton-Attraction theorems in case of a system of nonlinear equations. Subsequently this result is extended to the Levenberg-Morrison-Marquardt Algorithm.
Zusammenfassung
Für die Konvergenz des Gauß-Newton-Verfahrens werden mehrere Fixpunktsätze angegeben, die sich auf bekannte Fixpunktsätze für das Newtonverfahren im Falle von nichtlinearen Gleichungssystemen reduzieren. Dieses Ergebnis wird anschließend auf das Levenberg-Morrison-Marquardt-Verfahren erweitert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ben-Israel, A.: A Newton-Raphson-Method for the solution of equations. J. Math. Anal. Appl.15, 243–252 (1966).
Boggs, P. T., Dennis, J. E., jr.: A stability analysis for perturbed nonlinear iterative methods. Math. Comp.30, 199–215 (1976).
Brown, K. M., Dennis, J. E. jr.: Derivative-free analogues of the Levenberg-Marquardt and Gauss Algorithms for nonlinear least squares approximations. Numer. Math.18, 289–297 (1972).
Dennis, J. E. jr., Gay, D. M., Welsch, R. E.: An adaptive nonlinear least-squares algorithm. ACM Trans. Math. Software7, 348–368 (1981).
Deuflhard, P., Apostolescu, V.: A study of the Gauss-Newton Algorithm for the solution of nonlinear least squares problems. In: Special topics of applied mathematics (Frehse, J., Pallaschke, D., Trottenberg, U., eds.). North-Holland 1980.
Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton's method and extensions to related methods. SIAM J. Numer. Anal.16, 1–10 (1979).
Fletcher, R.: Practical methods of optimization: unconstrained optimization. New York: Wiley 1979.
Greville, T. N. E.: Some applications of the pseudoinverse of a matrix. SIAM Review2, 15–22 (1960).
Häußler, W. M.: Variable Schrittweitensteuerungen für die Homotopiemethode bei adäquaten nichtlinearen Ausgleichsproblemen. Computing29, 309–326 (1982).
Kowalik, J., Osborne, M.: Methods for unconstrained optimization problems. New York: American Elsevier 1968.
Lawson, C. L., Hanson, R. J.: Solving least squares problems. Englewood Cliffs, N. J.: Prentice-Hall 1974.
Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math.2, 164–168 (1944).
Marquardt, D. W.: An algorithm for least-squares-estimation of nonlinear parameters. SIAM J. Appl. Math.11, 431–441 (1963).
Meyer, R. R., Roth, P. M.: Modified damped least squares: an algorithm for nonlinear estimation. J. Inst. Maths. Applics.9, 218–233 (1972).
Moore, E. H.: On the reciprocal of the general algebraic matrix. Abstract. Bull. Amer. Math. Soc.26, 394–395 (1919/20).
Morrison, D. D.: Methods for nonlinear least squares problems and convergence proofs. Proc. Jet Propulsion Lab. Seminar1960, 1–9.
Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Penrose, R.: A generalized inverse for matrices. Proc. Cambridge Philos. Soc.51, 406–413 (1955).
Peters, G., Wilkinson, J. H.: The least squares problem and pseudo-inverses. Comp. J.13, 309–316 (1970).
Schwetlick, H.: Numerische Lösung von nichtlinearen Gleichungssystemen. München: Oldenbourg Verlag 1979.
Ypma, T. J.: Affine invariant convergence results for Newton's method. BIT22, 108–118 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Häußler, W.M. A local convergence analysis for the Gauss-Newton and Levenberg-Morrison-Marquardt Algorithms. Computing 31, 231–244 (1983). https://doi.org/10.1007/BF02263433
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02263433