Abstract
In this paper a table of difference schemes for the dispersive equationu i=au xxx is presented. A collection of criterions for deriving stability conditions of difference schemes is given and applied to these difference schemes.
Zusammenfassung
Dieser Artikel beinhaltet eine Zusammenstellung von Differenzenverfahren für die Dispersionsgleichungu 1=au xxx. Es werden Kriterien zur Herleitung von Stabilitätsbedingungen für Differenzenverfahren angegeben und auf die angegebenen Differenzenverfahren angewendet.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Feng Kang: Numerical computing method. Peking: 1978.
Richtmyer, R. D., Morton, K. W.: Difference method for initial value problem, 2nd ed., p. 185. Wiley-Interscience 1967.
Qin Mengzhao (Tsin Men chzhao): On the minimal order of integration of the equationu x+u x=0 by the method of finite differences. U.S.S.R. Comp. Mat. & Mat. phys.1, 1297 (1961)
Chzhan Guan tszyuan: On the minimum number of interpolation points in the numerical integration of the heat conduction equations. U.S.S.R. Comp. Mat. & Mat. phys.2, 78 (1962).
Eilbeck, Jchris: Numerical studies of solitons, proceedings of the symposium on nonlinear (soliton) structure and dynamics in condensed matter. Oxford, England, June 27–29, 1976.
Vliegenthart: On finite-difference method for the KdV equation. J. Eng. Maths.5, 137–155 (1971).
Miller, J. H.: On the location of zeros of certain classes of polynomials with application to numerical analysis. J. inst. math. Appl.8, 397–406 (1971).
Groig, I. S., Morris, J.: A Hopscotch method for the KdV equation. JCP20, 64–80 (1976).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mengzhao, Q. Difference schemes for the dispersive equation. Computing 31, 261–267 (1983). https://doi.org/10.1007/BF02263436
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02263436