Skip to main content
Log in

On maximally distant spanning trees of a graph

Über maximal entfernte Gerüste eines Graphen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A set ofk spanning trees of a graphG is calledmaximally distant if their union contains the maximum number of edges ofG. We present a necessary and sufficient condition for a set of spanning trees to be maximally distant. We also give an efficient algorithm which actually findsk maximally distant spanning trees in a given graph.

Zusammenfassung

Eine Menge vonk Gerüsten eines GraphenG heißtmaximal entfernt, falls ihre Vereinigung eine maximale Anzahl von Kanten des Graphen enthält. Es wird eine notwendige und hinreichende Bedingung angegeben, die gewährleistet, daß eine Menge von Gerüsten maximal entfernt ist. Dann wird ein effizienter Algorithmus beschrieben, der in einem gegebenen Graphenk maximal entfernte Gerüste findet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berge, C.: Graphs and Hypergraphs. New York: American Elsevier 1973.

    Google Scholar 

  2. Chase, S. M.: An implemented graph algorithm for winning Shannon switching games. Comm. ACM15, 253–256 (1972).

    Google Scholar 

  3. Edmonds, J.: Minimum partition of a matroid into independent subsets. J. Res. NBS69B, 67–72 (1965).

    Google Scholar 

  4. Kameda, T.: An algorithm for finding maximally distant spanning trees. Seminar Report, I. R. I. A., Roquencourt, France, 1974.

    Google Scholar 

  5. Kameda, T., Toida, S.: Efficient algorithms for determining an extremal tree of a graph. Proc. 14th Ann. IEEE Symp. Switch. Automata Theory, 12–15 (1973).

  6. Kishi, G., Kajitani, Y.: On maximally distant trees and principal partition of a linear graph. IEEE Trans. CT-16, 323–330 (1969).

    Google Scholar 

  7. Lehman, A.: A solution to the Shannon switching game. SIAM J. Appl. Math.12, 684–725 (1964).

    Google Scholar 

  8. Nash-Williams, C. St. J. A.: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc.36, 445–450 (1961).

    Google Scholar 

  9. Nash-Williams, C. St. J. A.: Decomposition of finite graphs into forests. J. London Math. Soc.39, 12 (1964).

    Google Scholar 

  10. Ohtsuki, T., Ishizaki, Y., Watanabe, H.: Topological degrees of freedom and mixed analysis of electrical networks. IEEE Trans. CT-17, 491–499 (1970).

    Google Scholar 

  11. Tarjan, R. E.: Depth-first search and linear graph algorithms. SIAM J. Computing1, 146–159 (1972).

    Google Scholar 

  12. Tutte, W. T.: On the problem of decomposing a graph inton connected factors. J. London Math. Soc.3, 221–230 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Research Council of Canada under Grant No. A4135 and was carried out while the author was Visiting Professor at the Institut für Angewandte Mathematik, Universität Frankfurt, Germany, during 1973–1974. The original version of this work has appeared as an internal report [4].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, T. On maximally distant spanning trees of a graph. Computing 17, 115–119 (1976). https://doi.org/10.1007/BF02276756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02276756

Keywords

Navigation