Abstract
We study the boundary element method for weakly singular and hypersingular integral equations of the first kind on screens resulting from the Dirichlet and Neumann problems for the Helmholtz equation. It is shown that the hp-version with geometrical refined meshes converges exponentially fast in both cases. We underline our theoretical results by numerical experiments for the pure h-, p-versions, the graded mesh and the hp-version with geometrically refined mesh.
Zusammenfassung
Wir betrachten die Randelementmethode für schwachsinguläre und hypersinguläre Integralgleichungen erster Art auf Schirmen. Die Integralgleichungen sind äquivalent zum Dirichlet- beziehungsweise Neumann-Problem für die Helmholtz-Gleichung im Außengebiet. Es wird gezeigt, daß die hp-Version mit geometrischem Gitter in beiden Fällen exponentiell in Abhängigkeit von den Freiheitsgraden konvergiert. Wir bestätigen unsere theoretischen Ergebnisse durch numerische Experimente für die reine h- und p-Version, für das graduierte Gitter und für die hp-Version mit geometrischem Gitter.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abou El-Seoud, S., Ervin, V. J., Stephan, E. P.: An improved boundary element method for the charge density of a thin electrified plate in ℝ3. Math. Meth. Appl. Sci.13, 291–303 (1990).
Costabel, M.: Boundary integral operators on Lipschitz domains. Elementary results. SIAM J. Math. Anal.19, 613–626 (1988).
Costabel, M., Stephan, E. P.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl.106, 367–413 (1985).
Costabel, M., Stephan, E. P.: Duality estimates for the numerical solution of integral equations. Num. Math.54, 339–353 (1988).
Dauge, M.: Elliptic Boundary value problems on corner domains. Lecture Notes in Mathematics Vol. 1341. Berlin Heidelberg New York Tokyo: Springer 1988.
Ervin, V. J., Stephan, E. P.: A boundary element Galerkin method for a hypersingular integral equation on open surfaces. Math. Meth. Appl. Sci.13, 281–289 (1990).
Heuer, N., Maischak, M., Stephan, E. P.: The hp-version of the boundary element method for screen problems. IfAM, Univ. Hannover, 1994.
Holm, H.: Randelelmentmethode fuer polyhedrale Gebiete in 3-D. PhD Thesis, Hannover, Germany, 1995.
Kondratiev, V. A.: Boundary problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc.16, 227–313 (1967).
Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. 1. Berlin Heidelberg New York: Springer 1972.
Maischak, M.: hp-Methoden für Randintegralgleichungen bei 3D-Problemen, Theorie und Implementierung. PhD Thesis, Hannover, Germany 1995.
Maischak, M., Stephan, E. P.: the hp-version of the boundary element method for first kind integral equations on polyhedral surfaces. IfAM, Hannover, 1994.
Schwab, Ch., Suri, M.: The optimal p-version approximation of singularities on polyhedra in the boundary element method. Univ. Maryland, Baltimore County, Baltimore MD, USA, 1993.
Stephan, E. P.: Boundary integral equations for screen problem in ℝ3. Integr. Equ. Operator Theor.10, 257–263 (1987).
Stephan, E. P.: Improved Galerkin methods for integral equations on polygons and polyhedral surfaces. Japan-U.S. Symposium on boundary element methods, pp. 73–80. Tokyo, 1988.
Stephan, E. P.: The h-p boundary element method for solving 2- and 3-dimensional problems especially in the presence of singularities and adaptive approaches. Hannover, 1994.
Maischak, M., Stephan, E. P.: The hp-version of the boundary element ℝ3. The basic approximation results. Math. Meth. Appl. Sci. (to appear).
Maischak, M., Stephan, E. P.: The hp-version of the boundary element method on polyhedral domains with quasiuniform meshes (in preparation).
Stephan, E. P., Wendland, W. L.: Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manus. Geol.1, 93–123 (1976).
Stephan, E. P., Wendland, W. L.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Rat. Mech. Anal.112, 363–390 (1990).
von Petersdorff, T., Stephan, E. P.: Decompositions in edge and corner singularities for the solution of the dirichlet problem of the laplacian in a polyhedron. Math. Nachr.149, 71–104 (1990).
von Petersdorff, T., Stephan, E. P.: Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Meth. Appl. Sci.12, 229–249 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Holm, H., Maischak, M. & Stephan, E.P. The hp-version of the boundary element method for Helmholtz screen problems. Computing 57, 105–134 (1996). https://doi.org/10.1007/BF02276875
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02276875