Abstract
We show that the error term of every modified compound quadrature rule for Cauchy principal value integrals with degree of exactnesss is of optimal order of magnitude in the classesC k[−1,1],k=1,2,...,s, but not inC s+1[−1,1]. We give explicit upper bounds for the error constants of the modified midpoint rule, the modified trapezoidal rule and the modified Simpson rule. Furthermore, the results are generalized to analogous rules for Hadamard-type finite part integrals.
Zusammenfassung
Wir zeigen, daß der Fehlerterm jedes modifizierten zusammengesetzten Quadraturverfahrens für Cauchy-Hauptwert-Integrale mit Exaktheitsgrads die bestmögliche Größenordnung in den KlassenC k[−1,1],k=1,2,...,s hat, aber nich inC s+1[−1,1]. Explizite obere Schranken für die Fehlerkonstanten der modifizierten Mittelpunkt-, Trapez- und Simpson-Verfahren werden angegeben. Des weiteren werden die Ergebnisse auf die entsprechenden Verfahren für Finite-Part-Integrale vom Hadamardschen Typ verallgemeinert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Braß, H.: Quadraturverfahren. Göttingen: Vandenhoeck & Ruprecht 1977.
Chawla, M. M., Jayarajan, N.: Quadrature formulas for Cauchy principal value integrals. Computing15, 347–355 (1975).
Davis, P. J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Orlando: Academic Press 1984.
Diethelm, K.: Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals. Hildesheimer Informatik-Berichte 23/1992, to appear in J. Comput. Appl. Math.
Diethelm, K.: Non-optimality of certain quadrature rule for Cauchy principal value integrals. Z. Angew. Math. Mech.74, T689-T690 (1994).
Diethelm, K.: Error estimates for a quadrature rule for Cauchy principal value integrals. Hildesheimer Informatik-Berichte 5/1993, to appear in the proceedings of the conference Mathematics of Computation 1943–1993.
Elliott, D., Paget, D. F.: Gauss type quadrature rules for Cauchy principal value integrals. Math. Comp.33, 301–309 (1979).
Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: Butzer, P. L., Fehér, F. (eds), E. B. Christoffel: The influence of his work on mathematics and the physical sciences, pp. 72–147. Basel: Birkhäuser 1981.
Gerasoulis, A.: Piecewise polynomial quadratures for Cauchy singular integrals. SIAM J. Numer. Anal.23, 891–902 (1986).
Hasegawa, T, Torii, T.: Hilbert and Hadamard transforms by generalized Chebyshev expansion. To appear in J. Comput. Appl. Math.
Ioakimidis, N. I.: On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives. Math. Comp.44, 191–198 (1985).
Monegato, G.: The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing29, 337–354 (1982).
Noble, B.; Beighton, S.: Error estimates for three methods of evaluating Cauchy principal value integrals. J. Inst. Math. Applic.26, 431–446 (1980).
Stewart, C. E.: On the numerical evaluation of singular integrals of Cauchy type. J. Soc. Indust. Appl. Math.8, 342–353 (1960).
Stolle, H. W.; Strauß, R.: On the numerical integration of certain singular integrals. Computing48, 177–189 (1992).
Wolfram, S.: Mathematica—a System for doing mathematics by computer. Redwood City: Addison-Wesley 1988.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Diethelm, K. Modified compound quadrature rules for strongly singular integrals. Computing 52, 337–354 (1994). https://doi.org/10.1007/BF02276881
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02276881