Skip to main content

Advertisement

Log in

A general approach to avoiding two by two submatrices

Ein allgemeiner Ansatz zur Vermeidung von 2×2 Untermatrizen

  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A matrixC is said to avoid a set ℱ of matrices, if no matrix of ℱ can be obtained by deleting some rows and columns ofC. In this paper we consider the decision problem whether the rows and columns of a given matrixC can be permuted in such a way that the permuted matrix avoids all matrices of a given class ℱ. At first an algorithm is stated for deciding whetherC can be permuted such that it avoids a set ℱ of 2×2 matrices. This approach leads to a polynomial time recognition algorithm for algebraic Monge matrices fulfilling special properties. As main result of the paper it is shown that permuted Supnick matrices can be recognized in polynomial time. Moreover, we prove that the decision problem can be solved in polynomial time, if the set ℱ is sufficiently dense, and a sparse set of 2×2 matrices is exhibited for which the decision problem is NP-complete.

Zusammenfassung

Eine MatrixC vermeidet eine Menge ℱ von Matrizen, wenn keine Matrix aus ℱ durch Streichen von Spalten und Zeilen vonC erhalten werden kann. In dieser Arbeit betrachten wir folgendes Entscheidungsproblem: Können die Zeilen bzw. Spalten einer MatrixC so vertauscht werden, daß die permutierte Matrix alle Matrizen aus einer gegebenen Menge ℱ vermeidet. Diese Arbeit enthält einen Algorithmus für den Fall, daß ℱ nur aus 2×2 Matrizen besteht. Dies führt zu einem polynomialen Erkennungsalgorithmus für spezielle algebraische Monge Matrizen. Als Hauptergebnis zeigen wir, daß permutierte Supnick Matrizen in polynomieller Zeit erkannt werden können. Zusätzlich wird bewiesen, daß im allgemeinen das Entscheidungsproblem NO-vollständig ist, es aber in polynomieller Zeit lösbar ist, wenn die Menge ℱ genügend dicht ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ageev, A. A., Beresnev, V. L.: Polynomially solvable special cases of the simple plant location problem. In: Kannan, R., Pulleyblank, W. R. (eds.) Proceedings of the First IPCO Conference, pp. 1–6. Waterloo: Waterloo University Press 1990.

    Google Scholar 

  2. Beresnev, V. L., Davydov, A. I.: On matrices with the connectedness property, Upravlyaemye sistemy19, 3–13 (1979) [in Russian].

    Google Scholar 

  3. Burkard, R. E.: Special cases of travelling salesman problems and heuristics, Acta Math. Appl. Sinica6, 273–288 (1990).

    Google Scholar 

  4. Burkard, R. E., van der Veen, J.: Universal conditions for algebraic travelling salesman problems to be efficiently solvable. Optimization22, 787–814 (1991).

    Google Scholar 

  5. Deineko, V. G., Filonenko, V. L.: On the reconstruction of specially structured matrices. Aktualnyje Problemy EVM, programmirovanije, Dnepropetrovsk, DGU, 1979 [in Russian].

    Google Scholar 

  6. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco: Freeman 1979.

    Google Scholar 

  7. Gutjahr, W., Welzl, E., Woeginger, G. J.: Polynomial graph-colorings, Discrete Appl. Math.35, 29–45 (1992).

    Google Scholar 

  8. Hoffman, A. J., Kolen, A. W. J., Sakarovitsch, M.: Totally-balanced and greedy matrices. SIAM J. Algebraic Discrete Methods6, 721–730 (1985).

    Google Scholar 

  9. Klinz, B., Rudolf, R., Woeginger, G. J.: Permuting matrices to avoid forbidden submatrices. Report 234-92, Mathematical Institute, TU Graz, Austria, 1992.

    Google Scholar 

  10. Klinz, B., Rudolf, R., Woeginger, G. J.: On the recognition of permuted bottleneck Monge matrices, to appear in Discrete Appl. Math. [A preliminary version appeared in Lecture Notes in Computer Science726, 248–259 (1993)].

    Google Scholar 

  11. Lewis, H. R., Papadimitriou C. H.: Elements of the Theory of Computation. New York: Prentice-Hall 1981.

    Google Scholar 

  12. Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput.16, 854–879 (1987).

    Google Scholar 

  13. Mehlhorn K.: Data structures and algorithms 2: graph algorithms and NP-completeness. Berlin Heidelberg New York Tokyo: Springer 1984.

    Google Scholar 

  14. Paige R., Tarjan, R. E.: Three partition refinement algorithms, SIAM J. Comput.16, 973–989 (1987).

    Google Scholar 

  15. Park, J. K.: A special case of then-vertex traveling salesman problem that can be solved inO(n) time. Inform. Proc. Lett.40, 247–254 (1991).

    Google Scholar 

  16. Supnick, F.: Extreme hamiltonian lines. Ann. Math.66, 179–201 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Christian Doppler Laboratorium für Diskrete Optimierung and by the Fonds zur Förderung der wissenschaftlichen Forschung, Project P8971-PHY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deineko, V., Rudolf, R. & Woeginger, G.J. A general approach to avoiding two by two submatrices. Computing 52, 371–388 (1994). https://doi.org/10.1007/BF02276883

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02276883

AMS Subject Classification

Key words