Abstract
A matrixC is said to avoid a set ℱ of matrices, if no matrix of ℱ can be obtained by deleting some rows and columns ofC. In this paper we consider the decision problem whether the rows and columns of a given matrixC can be permuted in such a way that the permuted matrix avoids all matrices of a given class ℱ. At first an algorithm is stated for deciding whetherC can be permuted such that it avoids a set ℱ of 2×2 matrices. This approach leads to a polynomial time recognition algorithm for algebraic Monge matrices fulfilling special properties. As main result of the paper it is shown that permuted Supnick matrices can be recognized in polynomial time. Moreover, we prove that the decision problem can be solved in polynomial time, if the set ℱ is sufficiently dense, and a sparse set of 2×2 matrices is exhibited for which the decision problem is NP-complete.
Zusammenfassung
Eine MatrixC vermeidet eine Menge ℱ von Matrizen, wenn keine Matrix aus ℱ durch Streichen von Spalten und Zeilen vonC erhalten werden kann. In dieser Arbeit betrachten wir folgendes Entscheidungsproblem: Können die Zeilen bzw. Spalten einer MatrixC so vertauscht werden, daß die permutierte Matrix alle Matrizen aus einer gegebenen Menge ℱ vermeidet. Diese Arbeit enthält einen Algorithmus für den Fall, daß ℱ nur aus 2×2 Matrizen besteht. Dies führt zu einem polynomialen Erkennungsalgorithmus für spezielle algebraische Monge Matrizen. Als Hauptergebnis zeigen wir, daß permutierte Supnick Matrizen in polynomieller Zeit erkannt werden können. Zusätzlich wird bewiesen, daß im allgemeinen das Entscheidungsproblem NO-vollständig ist, es aber in polynomieller Zeit lösbar ist, wenn die Menge ℱ genügend dicht ist.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ageev, A. A., Beresnev, V. L.: Polynomially solvable special cases of the simple plant location problem. In: Kannan, R., Pulleyblank, W. R. (eds.) Proceedings of the First IPCO Conference, pp. 1–6. Waterloo: Waterloo University Press 1990.
Beresnev, V. L., Davydov, A. I.: On matrices with the connectedness property, Upravlyaemye sistemy19, 3–13 (1979) [in Russian].
Burkard, R. E.: Special cases of travelling salesman problems and heuristics, Acta Math. Appl. Sinica6, 273–288 (1990).
Burkard, R. E., van der Veen, J.: Universal conditions for algebraic travelling salesman problems to be efficiently solvable. Optimization22, 787–814 (1991).
Deineko, V. G., Filonenko, V. L.: On the reconstruction of specially structured matrices. Aktualnyje Problemy EVM, programmirovanije, Dnepropetrovsk, DGU, 1979 [in Russian].
Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco: Freeman 1979.
Gutjahr, W., Welzl, E., Woeginger, G. J.: Polynomial graph-colorings, Discrete Appl. Math.35, 29–45 (1992).
Hoffman, A. J., Kolen, A. W. J., Sakarovitsch, M.: Totally-balanced and greedy matrices. SIAM J. Algebraic Discrete Methods6, 721–730 (1985).
Klinz, B., Rudolf, R., Woeginger, G. J.: Permuting matrices to avoid forbidden submatrices. Report 234-92, Mathematical Institute, TU Graz, Austria, 1992.
Klinz, B., Rudolf, R., Woeginger, G. J.: On the recognition of permuted bottleneck Monge matrices, to appear in Discrete Appl. Math. [A preliminary version appeared in Lecture Notes in Computer Science726, 248–259 (1993)].
Lewis, H. R., Papadimitriou C. H.: Elements of the Theory of Computation. New York: Prentice-Hall 1981.
Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Comput.16, 854–879 (1987).
Mehlhorn K.: Data structures and algorithms 2: graph algorithms and NP-completeness. Berlin Heidelberg New York Tokyo: Springer 1984.
Paige R., Tarjan, R. E.: Three partition refinement algorithms, SIAM J. Comput.16, 973–989 (1987).
Park, J. K.: A special case of then-vertex traveling salesman problem that can be solved inO(n) time. Inform. Proc. Lett.40, 247–254 (1991).
Supnick, F.: Extreme hamiltonian lines. Ann. Math.66, 179–201 (1957).
Author information
Authors and Affiliations
Additional information
This research has been supported by the Christian Doppler Laboratorium für Diskrete Optimierung and by the Fonds zur Förderung der wissenschaftlichen Forschung, Project P8971-PHY.
Rights and permissions
About this article
Cite this article
Deineko, V., Rudolf, R. & Woeginger, G.J. A general approach to avoiding two by two submatrices. Computing 52, 371–388 (1994). https://doi.org/10.1007/BF02276883
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02276883