Summary
This paper deals with the numerical approximation of weak solutions of the first initial, boundary value problem for the higher order, nonlinear parabolic equation
wheref=f(x, t, D v u), |v|≤p−1, p≥1 is an integer and α, β,v are multi-indices.
Zusammenfassung
Diese Arbeit behandelt die numerische Approximation von schwachen Lösungen der ersten Anfangs-Randwertaufgabe für die nichtlineare parabolische Gleichung höherer Ordnung
wof=f(x, t, D v u), |v|≤p−1, p≥1 ganz, und wo α, β,v multi-Indices sind.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agmon, S.: Lectures on Elliptic Boundary Value Problems. New York: Van Nostrand. 1965.
Allgower, E., andR. Guenther: A Functional Analytic Approach to the Numerical Solution of Nonlinear Elliptic Equations. Comp.,2, 1, 25 (1967).
Aronson, D. G.: On the Stability of Certain Finite Difference Approximations to Parabolic Systems of Differential Equations. Numer. Math.,5, 118 (1963), Correction, ibidAronson, D. G.: On the Stability of Certain Finite Difference Approximations to Parabolic Systems of Differential Equations. Numer. Math.,5, 290 (1963).
Courant, R., andD. Hilbert: Methods of Mathematical Physics, Vol. II. New York: Wiley (Interscience). 1962.
Fairweather, G., andA. R. Gourlay: Some Stable Difference Approximations to a Fourth-Order Parabolic Partial Differential Equation. Math. of Comp.,21, 1 (1967).
Kreiss, H. O.: Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT,2, 153 (1962).
Smirnov, W. I.: Lehrgang der Höheren Mathematik, Teil V, (Übersetzung aus dem Russischen). Berlin: VEB Deutscher Verlag der Wissenschaften, 1961.
Sobolev, S. L.: Applications of Functional Analysis in Mathematical Physics, Translation from the Russian in AMS Transls., Vol. 7, 1963.
Widlund, O. B.: On the Stability of Parabolic Difference Schemes, Math. of Comp.,19, 1 (1965).
Widlund, O. B.: Stability of Parabolic Difference Schemes in the Maximum Norm. Numer. Math.,8, 186 (1966).
Author information
Authors and Affiliations
Additional information
This work was done during summer employment by the authors at the Marathon Oil Company Denver Research Center, Littleton, Colorado.
Rights and permissions
About this article
Cite this article
Allgower, E., Guenther, R. On the numerical solution of higher order nonlinear parabolic equations. Computing 3, 139–150 (1968). https://doi.org/10.1007/BF02277456
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02277456