Skip to main content
Log in

Arithmetic of complex sets

Zur komplexen Mengen-Arithmetik

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Let\(\mathbb{I}\)(ℝ) be the set of all real closed intervals and letΩ 1:= {+, −, ×, /} be the set of arithmetic operators of ℝ. By extendingΩ 1 from ℝ to\(\mathbb{I}\)(ℝ) as usual one finds that\(\mathbb{I}\)(ℝ) is closed with respect to the operations fromΩ 1 (R. E. Moore [9]). In the literature several possibilities are discussed to go over from complex numbers to “complex intervals”: rectangles (Alefeld [1] et al.), discs (Henrici [4] et al.) or ellipses (Kahan [5] et al.). In all three cases the resulting sets are not closed with respect toΩ 1, since the multiplication and division of such “intervals” does not lead to sets of the same kind. In what follows the question is treated whether there are classes of complex sets (“generalized intervals”) which are closed with respect toΩ 1 or to subsets ofΩ 1. One such class is easy to find. Also the shape of the sets involved is discussed. If it is assumed however that the sets under consideration are described by a finite number of parameters then there isno such class closed underΩ 1.

Zusammenfassung

Es sei\(\mathbb{I}\)(ℝ) die Menge reeller abgeschlossener Intervalle undΩ 1:= {+, −, ×, /} die Menge der arithmetischen Operationen auf ℝ. Erweitert man dannΩ 1 von ℝ auf\(\mathbb{I}\)(ℝ) wie üblich, dann ist\(\mathbb{I}\)(ℝ) abgeschlossen gegenüber den Operationen vonΩ 1 (R. E. Moore [9]). In der Literatur werden verschiedene Möglichkeiten vorgeschlagen, um von komplexen Zahlen zu “komplexen Intervallen” überzugehen: Rechtecke (Alefeld [1] et al.), Kreise (Henrici [4] et al.), Ellipsen (Kahan [5] et al.). In allen drei Fällen sind die entstehenden Mengen nicht mehr abgeschlossen gegenüberΩ 1, weil die Multiplikation und Division solcher “Intervalle” nicht wieder auf Mengen derselben Art führt. Im folgenden wird die Frage behandelt, ob es Klassen von komplexen Mengen (“verallgemeinerte Intervalle”) gibt, die abgeschlossen sind gegenüberΩ 1 oder Teilmengen vonΩ 1. Außerdem wird untersucht, welche “Gestalt” solche Mengen besitzen. Während man solche Klassen sofort angeben kann, wird sich zeigen lassen, daß die Abgeschlossenheitnicht mehr erreichbar ist, wenn man noch zusätzlich fordert, daß diese Mengen (nur) durch endlich viele Parameter beschrieben werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G.: Intervallrechnung über den komplexen Zahlen und einige Anwendungen. Dissertation, Universität Karlsruhe, 1968.

  2. Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Mannheim-Wien-Zürich: Bibliographisches Institut 1974.

    Google Scholar 

  3. Hauenschild, M.: Arithmetiken für komplexe Kreise. Computing13, 299–312 (1974).

    Google Scholar 

  4. Henrici, P.: Circular arithmetic and the determination of polynomial zeros, in: Conference on Application of Numerical Analysis (Lecture Notes in Mathematics, 228), pp. 86–92. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  5. Kahan, W. M.: An ellipsoidal error-bound for linear systems of ordinary differential equations. Manuscript (1967).

  6. Kahan, W. M.: A more complete interval arithmetic. Lecture Notes for an Engineering Summer Course in Numerical Analysis at the University of Michigan, University of Michigan, 1968.

  7. Krier, N.: Komplexe Kreisarithmetik. Dissertation. Interner Bericht des Inst. f. Prakt. Math. 73/2, Universität Karlsruhe, 1973.

  8. Laveuve, S. E.: Definition einer Kahan-Arithmetik und ihre Implementierung, in: Interval Mathematics (Lecture Notes in Computer Science, Vol. 29), pp. 236–245. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  9. Moore, R. E.: Interval analysis. Englewood Cliffs, N. J.: Prentice-Hall 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper has been written while the author was visiting the Mathematics Research Center at the University of Wisconsin, Madison/Wisc., U. S. A., during the summer semester of 1979. It was supported by the Contract No. DAAG 29-75-C-0024.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, K. Arithmetic of complex sets. Computing 24, 97–105 (1980). https://doi.org/10.1007/BF02281715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02281715

Navigation