Skip to main content
Log in

A comparison of mathematical programming modeling systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We compare three mathematical programming modeling languages, GAMS, OMNI and MathPro. To understand the properties of these languages, we formulate four linear programs in each language. The formulations are representative of the kinds of model structures one encounters in practice. Each of the languages focuses on a different view of linear programs. GAMS approximates algebra, OMNI uses the activity view and MathPro uses a block schematic. We summarize our experiences with the languages and suggest areas for further enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Ashford and R.C. Daniel, LP-MODEL: XPRESS-LP's model builder, IMA J. Math. Manag. 1(1986)163–176.

    Google Scholar 

  2. J.J. Bisschop and A. Meeraus, On the development of a general algebraic modeling system in a strategic planning environment, Math. Progr. Study 20(1982)1–29.

    Google Scholar 

  3. Bonner and Moore Management Science,GAMMA 2000 User's Manual, Version 1.0, Houston, TX (1989).

  4. Bonner and Moore Management Science,RPMS User's Manual, Houston, TX (1977).

  5. R.L. Breitman and J.M. Lucas, PLANETS: A modeling system for business planning, Interfaces 17(1987)94–106.

    Google Scholar 

  6. A. Brooke, D. Kendrick and A. Meeraus,GAMS, A User Guide (The Scientific Press, Redwood City, CA, 1988).

    Google Scholar 

  7. Chesapeake Decision Sciences,MIMI/LP User Manual, Version 2.63, New Providence, NJ (1988).

  8. Control Data Corporation,PDS/MAGEN User Information Manual, Version 1.1, Haverly Systems, Denville, NJ (1974).

    Google Scholar 

  9. K. Cunningham and L. Schrage, The LINGO modeling language, Technical Report, University of Chicago, Chicago, IL (1989).

    Google Scholar 

  10. R.E. Day and H.P. Williams, MAGIC: The design and use of an interactive modeling language for mathematical programming, IMA J. Math. Manag. 1(1986)53–65.

    Google Scholar 

  11. E.F.D. Ellison and G. Mitra, UIMP: User interface for mathematical programming, ACM Trans. Math. Software 8(1982)229–255.

    Google Scholar 

  12. R. Fourer, Modeling languages versus matrix generators for linear programming, ACM Trans. Math. Software 9(1983)143–183.

    Google Scholar 

  13. R. Fourer, D.M. Gay and B.W. Kernighan, Modeling languages for mathematical programming, Manag. Sci. 36(1990)519–554.

    Google Scholar 

  14. A. Geoffrion, SML: A model definition language for structured modeling, Working Paper No. 360, Western Management Science Institute, University of California, Los Angeles, CA (1988; revised November 1989).

    Google Scholar 

  15. A. Geoffrion, The SML language for structured modeling, Working Paper No. 378, Western Management Science Institute, University of California, Los Angeles, CA (1990).

    Google Scholar 

  16. H.J. Greenberg, A primer for MODLER: Modeling by object-driven linear elemental relationships, Mathematics Department, University of Colorado at Denver, Denver, CO (1990).

    Google Scholar 

  17. H.J. Greenberg and F.H. Murphy, Views of mathematical programming models and their instances, Technical Report, Mathematics Department, University of Colorado at Denver, Denver, CO (1991).

    Google Scholar 

  18. Haverly Systems,OMNI Linear Programming System: User and Operating Manual, Denville, NJ (1976).

  19. Haverly Systems,MAGEN Reference Manual, Denville, NJ (1976).

  20. T. Hürlimann,Reference Manual for the LPL Modeling Language (Version 3.1), Institute for Automation and Operations Research, University of Fribourg, CH-17700 Fribourg, Switzerland (1989).

    Google Scholar 

  21. T. Hürlimann and J. Kohlas, LPL: A structured language for linear programming modeling, OR Spektrum 10(1988)55–63.

    Google Scholar 

  22. C.V. Jones, Applications of a graph-based modeling system (GBMS), Technical Report 88-10-02, The Wharton School, University of Pennsylvania, Philadelphia, PA (1988).

    Google Scholar 

  23. C.V. Jones, An introduction to graph-based modeling systems, Part I: Overview, ORSA J. Comput. 2(1990)136–151.

    Google Scholar 

  24. Ketron Management Science,DATAFORM User Manual, McClean, VA (1987).

  25. R. Krishnan, A logic based approach to model construction, SUPA Technical Report, Carnegie-Mellon University, Pittsburgh, PA (1988).

    Google Scholar 

  26. C.V. Jones, An introduction to graph-based modeling systems, Part II, ORSA J. Comput. (1991).

  27. D.A. Kendrick and R. Krishnan, A comparison of structured modeling and GAMS, Comp. Sci. Econ. Manag. 2(1989)17–36.

    Google Scholar 

  28. C. Lucas and G. Mitra, CAMPS: Preliminary User Manual, Department of Mathematics and Statistics, Brunel University, Middlesex, UK.

  29. P.-C. Ma, F.H. Murphy and E.A. Stohr, A graphics interface for linear programming, Commun. ACM 32(1989)996–1012.

    Google Scholar 

  30. MathPro, Inc.,MathPro Usage Guide, Introduction and Reference, Washington, DC (1990).

  31. A. Meeraus, An algebraic approach to modeling,3rd Conf. on Economic Dynamics and Control, Lyngby, Denmark (1981).

  32. F.H. Murphy and E.A. Stohr, An intelligent system for formulating linear programs, Dec. Support Syst. 2(1986)39–48.

    Google Scholar 

  33. F.H. Murphy, E.A. Stohr and A. Asthana, Representation schemes for mathematical programming models, Working Paper, New York University (1990).

  34. W. Orchard-Hays,DATAMAT User Manual, National Bureau of Economic Research, Cambridge, MA (1978).

    Google Scholar 

  35. K.H. Palmer, N.K. Boudwin, H.A. Patton, A.J. Rowland, J.D. Sammes and D.M. Smith,A Model-Management Framework for Mathematical Programming (Wiley, 1984).

  36. R.L. Sanders and M.G. Smith, A description of Bonner and Moore's GAMMA system, Report No. CSH-007, Bonner and Moore Managament Science, Houston, TX (1976).

    Google Scholar 

  37. R. Sharda and D. Steiger, Functional description of a graph-based interface for network modeling (GIN), Technical Report, Oklahoma State University, Stillwater, OK (1989)

    Google Scholar 

  38. L. Schrage,Linear, Integer and Quadratic Programming with LINDO (The Scientific Press, Redwood City, CA (1987).

    Google Scholar 

  39. J.S. Welch, Jr., PAM — A practitioner's approach to modeling, Manag. Sci. 33(1987)610–625.

    Google Scholar 

  40. R.V. Simmons, Mathematical programming modeling using MGG, IMA J. Math. Manag. 1(1986) 267–276.

    Google Scholar 

  41. H. Wagner,Principles of Operations Research (Prentice-Hall, Englewood Cliffs, NJ, 1975).

    Google Scholar 

  42. C. Witzgall and M. McClain, Problem specification for linear programs, IMA J. Math. Manag. 1(1985)177–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, H.J., Murphy, F.H. A comparison of mathematical programming modeling systems. Ann Oper Res 38, 177–238 (1992). https://doi.org/10.1007/BF02283654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02283654

Keywords

Navigation