Skip to main content
Log in

Automatic construction of accurate models of physical systems

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper describes an implemented computer program called PRET that automates the process of system identification: given hypotheses, observations, and specifications, it constructs an ordinary differential equation model of a target system with no other inputs or intervention from its user. The core of the program is a set of traditional system identification (SID) methods. A layer of artificial intelligence (AI) techniques built around this core automates the high-level stages of the identification process that are normally performed by a human expert. The AI layer accomplishes this by selecting and applying appropriate methods from the SID library and performing qualitative, symbolic, algebraic, and geometric reasoning on the user's inputs. For each supported domain (e.g., mechanics), the program uses a few powerful encoded rules (e.g., σF=0) to combine hypotheses into models. A custom logic engine checks models against observations, using a set of encoded domain-independent mathematical rules to infer facts about both, modulo the resolution inherent in the specifications, and then searching for contradictions. The design of the next generation of this program is also described in this paper. In it, discrepancies between sets of facts will be used to guide the removal of unnecessary terms from a model. Power-series techniques will be exploited to synthesize new terms from scratch if the user's hypotheses are inadequate, and sensors and actuators will allow the tool to take aninput-output approach to modeling real physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abelson, M. Eisenberg, M. Halfant, J. Katzenelson, G.J. Sussman and K. Yip, Intelligence in scientific computing,Commun. ACM (June 1989).

  2. S. Addanki, R. Cremonini and J.S. Penberthy, Reasoning about assumptions in graphs of models,Proc. IJCAI-89, Detroit, MI (1989).

  3. S. Addanki, R. Cremonini and J.S. Penberthy, Graphs of models,Artificial Intelligence 51 (1991) 145–178.

    Google Scholar 

  4. J. Amsterdam, Automated qualitative modeling of dynamic physical systems, Ph.D. Thesis, MIT (1992).

  5. K.J. Astrom and P. Eykhoff, System identification — a survey,Automatica 7 (1971) 123–167.

    Google Scholar 

  6. D. Berleant and B.J. Kuipers, Combined qualitative and numerical simulation with Q3, in: eds. B. Faltings and P. Struss,Recent Advances in Qualitative Physics (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  7. D.G. Bobrow, Qualitative reasoning about physical systems: An introduction,Artificial Intelligence 24 (1984) 1–5.

    Google Scholar 

  8. D.G. Bobrow (ed.),Qualitative Reasoning about Physical Systems (MIT Press, Cambridge, MA, 1985).

    Google Scholar 

  9. D.G. Bobrow (ed.),Artificial Intelligence in Perspective (MIT Press, Cambridge, MA, 1993).

    Google Scholar 

  10. P.T. Boggs, J.R. Donaldson, R.H. Byrd and R.B. Schnabel, Algorithm 676 — ODRPACK: Software for orthogonal distance regression,ACM Trans. Math. Software 15 (1989) 348–364.

    Google Scholar 

  11. E. Bradley, Taming chaotic circuits, Ph.D. Thesis, MIT (1992).

  12. E. Bradley, Autonomous exploration and control of chaotic systems,Cybern. Syst. 26 (1995) 299–319.

    Google Scholar 

  13. B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan and S.M. Watt,Maple V Language Reference Manual (Springer, New York, 1991).

    Google Scholar 

  14. J. Cohen, Constraint logic programming languages,Commun. ACM 33(7) (1990) 52–68.

    Google Scholar 

  15. A. Collins and E.E. Smith (eds.),Readings in Cognitive Science (Morgan Kaufmann, San Mateo, CA, 1988).

    Google Scholar 

  16. R. Davis, Diagnostic reasoning based on structure and behavior,Artificial Intelligence 24 (1984).

  17. J. de Kleer, An assumption-based TMS,Artificial Intelligence 28 (1986).

  18. J. de Kleer and J.S. Brown, A qualitative physics based on confluences,Artificial Intelligence 24 (1984) 7–83.

    Google Scholar 

  19. J. de Kleer, A. Mackworth and R. Reiter, Characterizing diagnoses,Proc. AAAI-90 (1990).

  20. J. de Kleer and B.C. Williams, Diagnosing multiple faults,Artificial Intelligence 32(1) (1987).

  21. J. de Kleer and B.C. Williams (eds.),Artificial Intelligence 51 (1991).

  22. J.A. Doyle, A truth maintenance system,Artificial Intelligence 12 (1979).

  23. D. Dvorak and B.J. Kuipers, Model-based monitoring of dynamic systems,Proc. IJCAI-89 (1989).

  24. B. Falkenhainer and K.D. Forbus, Compositional modeling: Finding the right model for the job,Artificial Intelligence 51 (1991) 95–143.

    Google Scholar 

  25. B. Faltings and P. Struss (eds.),Recent Advances in Qualitative Physics (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  26. K.D. Forbus, Qualitative process theory,Artificial Intelligence 24 (1984) 85–168.

    Google Scholar 

  27. K.D. Forbus, The qualitative process engine, in: eds. D.S. Weld and J. de Kleer,Readings in Qualitative Reasoning About Physical Systems (Morgan Kaufmann, San Mateo, CA, 1990), University of Illinois Department of Computer Science Technical Report (1986).

    Google Scholar 

  28. K.D. Forbus and J. de Kleer,Building Problem Solvers (MIT Press, Cambridge, MA, 1993).

    Google Scholar 

  29. S.I. Gass (ed.),Operations Research, Mathematics and Models (Am. Math. Soc., Providence, RI, 1981).

    Google Scholar 

  30. N.S. Gershenfeld and A.S. Weigend, The future of time series, in:Time Series Prediction: Forecasting the Future and Understanding the Past, Santa Fe Institute Studies in the Sciences of Complexity, Santa Fe, NM (1993).

  31. H. Goldstein,Classical Mechanics (Addison-Wesley, Reading, MA, 1980).

    Google Scholar 

  32. G. Gouesbet and J. Maquet, Construction of phenomenological models from numerical scalar time series,Physica D58 (1992) 202–215.

    Google Scholar 

  33. P. Hayes, The second naive physics manifesto, in: J. Hobbs and R. Moore (eds.),Formal Theories of the Commonsense World (Ablex, Norwood, 1985) pp. 1–36.

    Google Scholar 

  34. Y. Iwasaki and H.A. Simon, Causality in device behavior,Artificial Intelligence 29 (1986) 3–32.

    Google Scholar 

  35. B.J. Kuipers, Qualitative simulation,Artificial Intelligence 29 (1986) 289–338.

    Google Scholar 

  36. B.J. Kuipers, Abstraction by time scale in qualitative simulation,Proc. AAAI-87, Seattle, WA (1987) pp. 621–625.

  37. B.J. Kuipers,Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge (Addison-Wesley, Reading, MA, 1992).

    Google Scholar 

  38. B.J. Kuipers, Reasoning with qualitative models,Artificial Intelligence 59 (1993) 125–132.

    Google Scholar 

  39. P. Langley, H.A. Simon, G.L. Bradshaw and J.M. Zytkow (eds.),Scientific Discovery: Computational Explorations of the Creative Process (MIT Press, Cambridge, MA, 1987).

    Google Scholar 

  40. L. Ljung (ed.),System Identification: Theory for the User (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    Google Scholar 

  41. F. Morrison,The Art of Modeling Dynamic Systems (Wiley, New York, 1991).

    Google Scholar 

  42. S. Murthy, Qualitative reasoning at multiple resolutions,Proc. AAAI-88 (1988).

  43. P. Nayak, Causal approximations,Proc. AAAI-92 (1992).

  44. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, UK, 1988).

    Google Scholar 

  45. O. Raiman, Order of magnitude reasoning,Artificial Intelligence 51 (1991).

  46. J. Rees and W. Clinger, The revised report on the algorithmic language Scheme,ACM SIGPLAN Notices 21 (1986).

  47. M. Schetzen, A theory of non-linear system identification,Int. J. Control 20 (1974) 577–592.

    Google Scholar 

  48. H.W. Sorenson,Kalman Filtering: Theory and Application (IEEE Press, 1985).

  49. R.M. Stallman and G.J. Sussman, Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis,Artificial Intelligence 9 (1977) 135–196.

    Google Scholar 

  50. L. Sterling and E. Shapiro,The Art of PROLOG (MIT Press, Cambridge, MA, 1986).

    Google Scholar 

  51. P. Struss, Mathematical aspects of qualitative reasoning,Int. J. Artificial Intell. Eng. 3(3) (1988).

  52. P. Struss, Testing physical systems,Proc. AAAI-94 (1994).

  53. D.S. Weld, Reasoning about model accuracy,Artificial Intelligence 56 (1992) 255–300.

    Google Scholar 

  54. D.S. Weld and J. de Kleer (eds.),Readings in Qualitative Reasoning About Physical Systems (Morgan Kaufmann, San Mateo, CA, 1990).

    Google Scholar 

  55. B.C. Williams, A theory of interactions: Unifying qualitative and quantitative algebraic reasoning,Artificial Intelligence 51 (1991).

  56. P.H. Winston,Artificial Intelligence, 3rd ed. (Addison-Wesley, Redwood City, CA, 1992).

    Google Scholar 

  57. K. Yip, Understanding complex dynamics by visual and symbolic reasoning,Artificial Intelligence 51 (1991).

  58. K. Yip, Model simplification by asymptotic order of magnitude reasoning,Proc. AAAI-93 (1993) pp. 634–640.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by two NSF grants: National Young Investigator award #CCR-9357740 and #MIP-9403223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, E., Stolle, R. Automatic construction of accurate models of physical systems. Ann Math Artif Intell 17, 1–28 (1996). https://doi.org/10.1007/BF02284622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284622

Keywords

Navigation